

Hoja de Datos de Seguridad

Derechos Reservados,2025, 3M Company. Todos los derechos reservados. Se permite copiar y/o descargar esta información con el objetivo de utilizar de manera correcta los productos de 3M, solamente si: (1) Se copia la información completa sin ninguna modificación, a menos que se obtenga una autorización por escrito de 3M, y (2) que ni la copia ni el original se revendan o distribuyan con la intención de obtener una ganancia.

Número del grupo de 41-3294-0 Número de versión: 2.00

documento:

Fecha de publicación: 08/10/2025 Fecha de reemplazo: 04/03/2025

La presente Hoja de Datos de Seguridad se preparó de conformidad con la Norma Oficial Mexicana NOM-018-STPS-2015, Sistema armonizado para la identificación y comunicación de peligros y riesgos por sustancias químicas peligrosas en los centros de trabajo.

SECCIÓN 1: Identificación del producto

1.1. Identificación del producto

Pulidor 3M® Premium Finesse-it® Serie 315, 77197, 52061

Números de identificación del producto

HB-0047-2069-2 HB-0047-2215-1 UU-0103-1635-2

1.2. Uso recomendado y restricciones de uso

Uso recomendado

Producto abrasivo, Abrasivo líquido para corrección de pintura

1.3. Detalles del proveedor

Nombre del 3M México, S.A. de C.V.

proveedor o fabricante

Dirección: Av. Santa Fe No. 55, Col. Santa Fe, Álvaro Obregón, Ciudad de México, CP 01376

Teléfono: (55)52700400

Correo mxproductehs@mmm.com

electrónico:

Sitio web: www.3M.com.mx

1.4. Número telefónico de emergencia

01 800-002-1400

SECCIÓN 2: Identificación de peligros

2.1. Clasificación de la sustancia o de la mezcla.

Corrosión/irritación cutánea: Categoría 3.

2.2. Elementos de la etiqueta.

Palabra de advertencia

Atención

Símbolos

No relevante

Pictogramas

No relevante

INDICACIONES DE PELIGRO:

I DICHCIO LES DE I ELIGICO.						
H316	Causa irritación cutánea leve.					

2.3. Otros peligros.

La aspiración no se aplica - viscosidad

SECCIÓN 3: Composición/información de los componentes

Este material es una mezcla

Ingrediente	C.A.S. No.	% por peso
Agua	7732-18-5	50 - 70
DESTILADOS DE PETRÓLEO LIGERO	64742-47-8	10 - 30
HIDROTRATADO Óxido de aluminio	1344-28-1	1 - 15
		3 - 7
Aceite mineral blanco (petróleo) Solvente refinado de Destilados medios	8042-47-5 64742-46-7	3 - 7
Hidrogenados	04/42-40-/	3 - /
Oleato de polialquileno	Secreto Comercial	1 - 5
Glicerina	56-81-5	1 - 5
MONOOLEATO DE	9004-96-0	1 - 5
POLIETILENGLICOL		

SECCIÓN 4: Primeros auxilios

4.1. Descripción de las medidas de primeros auxilios.

Inhalación:

Lleve a la persona al aire libre. Si siente malestar, consiga atención médica.

Contacto con la piel:

Lave con agua y jabón. Si aparecen signos o síntomas, consiga atención médica.

Contacto con los ojos:

Si está expuesto, enjuague los ojos con grandes cantidades de agua. Quítese los lentes de contacto si es fácil de hacer. Continúe enjuagando. Si se presentan signos/síntomas, busque atención médica.

En caso de deglución:

Enjuague la boca. Si siente malestar, consiga atención médica.

4.2. Síntomas y efectos más importantes, tanto agudos como retardados

No hay síntomas o efectos críticos. Remítase a la Sección 11.1. Información acerca de efectos toxicológicos.

4.3. Indicación de cualquier atención médica inmediata y tratamientos especiales requeridos.

No relevante.

SECCIÓN 5: Medidas contra incendios

5.1. Medios de extinción apropiados

Use un agente contra incendios adecuado para el incendio circundante.

5.2. Peligros especiales que resulten de la sustancia o mezcla

Ninguno inherente en este producto.

5.3. Acciones de protección especial los bomberos o para las personas que combaten el incendio.

No se prevén acciones especiales de protección para los bomberos.

SECCIÓN 6 : Medidas en caso de derrame o fuga accidental

6.1. Precauciones que debe adoptar el personal, equipo de protección y procedimientos de emergencia

Evacue el área. Ventile el área con aire fresco. En derrames grandes, o derrames en espacios confinados, ventile en forma mecánica para dispersar o extraer los vapores de conformidad con las buenas prácticas de higiene industrial. Usar equipo de protección personal (EPP por sus siglas en español) con base en los resultados de una evaluación por exposición; consulte la Sección 8 para obtener recomendaciones de EPP. Si una exposición anticipada ocasionada por una liberación accidental excede las capacidades del EPP listado en la Sección 8, o no se sabe qué equipo usar, seleccione un EPP que ofrezca un nivel adecuado de protección, además de considerar los riesgos físicos y químicos del material al hacerlo. Algunos ejemplos de EPP para respuesta a emergencias pueden incluir un equipo bunker y de rescate para liberación de materiales inflamables; ropa con protección contra químicos si el material derramado es corrosivo, sensibilizante, irritante dérmico severo o puede absorberse por la piel; o un respirador de presión positiva con suministro de aire para químicos con riesgo por inhalación. Para obtener información sobre riesgos físicos y de salud, consulte las Secciones 2 y 11 de la Hoja de Datos de Seguridad (HDS por sus siglas en español).

6.2. Precauciones ambientales

Evite liberarlo al medio ambiente.

6.3. Métodos y material para contención y limpieza

Contenga el derrame. Trabaje desde los bordes hacia el centro del derrame, cubra con bentonita, vermiculita u otro material inorgánico absorbente disponible en el mercado. Mezcle suficiente absorbente hasta que aparente estar seco. Recuerde, al agregar material absorbente no se elimina el peligro físico, a la salud o ambiental. Recolecte todo el material derramado que sea posible. Coloque en un recipiente cerrado aprobado para transporte por las autoridades correspondientes. Limpie los residuos con un solvente apropiado seleccionado por una persona calificada y autorizada. Ventile el área con aire fresco. Lea y siga las precauciones de seguridad en la etiqueta del solvente y en la HDS. Selle el recipiente. Deseche el material recolectado tan pronto sea posible.

SECCIÓN 7: Manejo y almacenamiento

7.1. Precauciones para una manipulación segura.

Evite respirar el polvo creado al cortar, lijar, esmerilar o mecanizar. Evite respirar el polvo, humo, gas, neblina, vapores o aerosol. No coma, beba o fume cuando use este producto. Lave vigorosamente después de manipularlo. Evite liberarlo al medio ambiente. El polvo combustible puede formar otro material (sustrato) por acción del producto. El polvo generado del sustrato durante el uso del producto puede ser explosivo si alcanza la concentración suficiente en una fuente de ignición. No debe permitirse la formación de depósitos de polvo sobre las superficies por el potencial de generar explosiones secundarias.

7.2. Condiciones para almacenamiento seguro incluyendo cualquier incompatibilidad.

Sin requisitos especiales de almacenamiento.

SECCIÓN 8: Controles de exposición/protección personal

8.1. Parámetros de control

Límites de exposición ambiental

Si un componente se divulga en la sección 3, aunque no aparezca en la siguiente tabla, el límite de exposición ocupacional no

está disponible para dicho componente.

Ingrediente	C.A.S. No.	. No. Agencia Tipo de límite		Comentarios adicionales
Óxido de aluminio	1344-28-1	Límites de exposición ocupacional, México	TWA (8 horas): 10 mg/m3	
CAS NO M~AL~F	1344-28-1	ACGIH	TWA (fracción respirable): 1 mg/m3	A4: Sin clasificación como carcinógeno humano
Partículas (insolubles o poco solubles) no especificadas de otro modo, partículas inhalables	1344-28-1	ACGIH	TWA (partículas inhalables): 10 mg / m3	
Partículas (insolubles o poco solubles) no especificadas de otro modo, partículas respirables	1344-28-1	ACGIH	TWA (partículas respirables): 3 mg / m3	
Glicerina	56-81-5	Límites de exposición ocupacional, México	TWA (8 horas): 10 mg/m3	
Aceite de parafina	64742-46-7	Límites de exposición ocupacional, México	TWA (8 horas): 5 mg/m3	
ACEITES MINERALES, ACEITES ALTAMENTE REFINADOS.	64742-47-8	ACGIH	TWA (fracción inhalable): 5 mg/m3	A4: Sin clasificación como carcinógeno humano
ACEITES MINERALES, ACEITES ALTAMENTE REFINADOS.	64742-47-8	Límites de exposición ocupacional, México	TWA (8 horas): 5 mg/m3	
ACEITES MINERALES, ACEITES ALTAMENTE REFINADOS.	8042-47-5	ACGIH	TWA (fracción inhalable): 5 mg/m3	A4: Sin clasificación como carcinógeno humano
ACEITES MINERALES, ACEITES ALTAMENTE REFINADOS.	8042-47-5	Límites de exposición ocupacional, México	TWA (8 horas): 5 mg/m3	
Aceite de parafina	8042-47-5	Límites de exposición ocupacional, México	TWA (8 horas): 5 mg/m3	

ACGIH: Conferencia Estadounidense de Higienistas Industriales Gubernamentales (ACGIH)

AIHA: Asociación Estadounidense de Higiene Industrial

CMRG: Lineamientos recomendados por el fabricante de los productos químicos

Límites de exposición ocupacional, México: México: Límites de exposición ocupacional. NOM-010-STPS-2014, Agentes químicos contaminantes del ambiente laboral-Reconocimiento, evaluación y control.

TWA: Promedio ponderado en tiempo STEL: Límite de exposición a corto plazo

CEIL: Límite superior

8.2. Controles de exposición

8.2.1. Controles de ingeniería.

Use ventilación general por dilución o ventilación de escape local para controlar las exposiciones aéreas correspondientes por debajo de los límites de exposición y controle el polvo, humo, gas, neblina, vapores y aerosol. Si la ventilación no es adecuada, use equipo de protección respiratoria. Proporcione escape local en las fuentes de emisión del proceso para controlar la exposición cercana a la fuente y evitar que el escape de polvo abarque el área de trabajo. Asegúrese que los sistemas para manejar el polvo (como ductos de escape, colectores de polvo, vasos y equipo de procesamiento) estén diseñados de tal forma que eviten que el polvo escape y abarque el área de trabajo (esto es, que no haya fugas en el equipo).

8.2.2. Equipos de protección individual (EPIs)

Protección de ojos/cara

Ninguno requerido.

Protección cutánea/mano

Con base en los resultados de una evaluación de exposición, seleccione y use guantes o ropa de protección aprobada por las normas locales correspondientes para evitar el contacto con la piel. La selección debe basarse tanto en los factores de uso como en los niveles de exposición, concentración de la sustancia o mezcla, frecuencia y duración, cambios físicos, como temperaturas extremas, y otras condiciones de uso. Consulte al fabricante de guantes o ropa de protección para seleccionar los guantes/ropa compatibles apropiados. Nota: Los guantes de nitrilo pueden usarse sobre guantes de polímero laminado para mejorar la destreza.

Se recomiendan guantes elaborados con los siguientes materiales: Polímero laminado

Cuando se puede presentar contacto incidental, se pueden usar materiales de guantes alternativos. Si ocurre el contacto con el guante, retírelo inmediatamente y reemplácelo con un conjunto de guantes nuevos. Para contacto incidental, se pueden usar guantes hechos de los siguientes materiales: Caucho de nitrilo

Protección respiratoria

Puede necesitarse una evaluación de exposición para decidir si requiere un respirador. Si es necesario un respirador, use respiradores como parte del programa de protección respiratoria completa. Con base en los resultados de la evaluación de exposición, seleccione de los siguientes tipos de respiradores para reducir la exposición por inhalación:

Respirador purificador de aire con pieza facial de media cara o cara completa apropiado para vapores orgánicos y partículas

Para asuntos relacionados con la conveniencia para una aplicación específica, consulte al fabricante del respirador.

SECCIÓN 9: Propiedades físicas y químicas

9.1. Información con base en las propiedades físicas y químicas

Estado físico	Líquido		
Forma física específica:	Emulsión		
Color	Blanco		
Olor	Ligero de disolvente		
Límite de olor	Sin datos disponibles		
pH	8.1 - 9.5		
Punto de fusión/punto de congelamiento	Sin datos disponibles		
Punto de ebullición/punto inicial de ebullición /	95 - 105 °C		
Intervalo de ebullición			
Punto de inflamación	Sin punto de inflamación		
Velocidad de evaporación	Sin datos disponibles		
Inflamabilidad	No aplicable		
Límite inferior de inflamabilidad (LEL)	Sin datos disponibles		
Límite superior de inflamabilidad (UEL)	Sin datos disponibles		

Page: 5 of 15

Presión de vapor	Sin datos disponibles			
Densidad relativa de vapor	Sin datos disponibles			
Densidad	1.05 - 1.1 kg/l			
Densidad relativa	[Norma de referencia: AGUA = 1]Sin datos disponibles			
Solubilidad en agua	Sin datos disponibles			
Solubilidad no acuosa	Sin datos disponibles			
oeficiente de partición: n-octanol/agua Sin datos disponibles				
Temperatura de autoignición	Sin datos disponibles			
Temperatura de descomposición	Sin datos disponibles			
Viscosidad cinemática 37,383 - 43,729 mm2/seg				
Compuestos orgánicos volátiles 14.5 % del peso				
Porcentaje volátil	75.4 % del peso			
VOC menos H2O y solventes exentos	222.3 g/l			
Peso molecular	No aplicable			

Características de las partículas	No aplicable

SECCIÓN 10: Estabilidad y reactividad

10.1. Reactividad

Este material puede reaccionar con ciertos agentes en determinadas condiciones; remítase a los encabezados restantes en esta sección.

10.2. Estabilidad química

Estable.

10.3. Posibilidad de reacciones peligrosas

No se producirá polimerización peligrosa.

10.4. Condiciones que deben evitarse

No determinado

10.5. Materiales incompatibles

Ninguno conocido.

10.6 Productos de descomposición peligrosos.

		0	
<u>Sustancia</u>			Condiciones
Hidrocarburos			A temperaturas elevadas
Monóxido de carbono			A temperaturas elevadas
Dióxido de carbono			A temperaturas elevadas
Óxidos de nitrógeno			A temperaturas elevadas

SECCIÓN 11. Información toxicológica

La información a continuación puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones específicas de los ingredientes están determinadas por la autoridad competente. Además, los datos toxicológicos de los ingredientes pueden no reflejarse en la clasificación del material y/o las señales y síntomas de exposición, porque un ingrediente puede estar presente por debajo del umbral de etiquetado, puede no estar disponible para la exposición o los datos pueden no ser relevantes para el material como un todo.

11.1. Información acerca de efectos toxicológicos

Signos y síntomas de la exposición

Basándose en datos de ensayo y/o en información de los componentes, este material produce los siguientes efectos.

Inhalación:

Irritación en las vías respiratorias: los signos y síntomas pueden incluir tos, estornudos, escurrimiento nasal, cefalea, ronquera y dolor de nariz y garganta.

Contacto con la piel:

Irritación cutánea leve: los signos y síntomas pueden incluir enrojecimiento localizado, inflamación, sarpullido y resequedad.

Contacto con los ojos:

No se espera que ocurra contacto con los ojos durante el uso del producto que origine una irritación significativa.

Ingestión:

Irritación gastrointestinal: los signos y síntomas pueden incluir dolor abdominal, malestar estomacal, náusea, vómito y diarrea.

Datos toxicológicos

Si un componente está descrito en la sección 3 pero no aparece en la tabla de debajo, puede que no haya datos disponibles para ese criterio o que los datos no sean suficientes para su clasificación.

Toxicidad aguda

Nombre	Vía de administra ción	Especies	Valor
Producto en general	Ingestión:		No hay datos disponibles; calculado ATE >5,000 mg/kg
Óxido de aluminio	Dérmico		LD50 estimado para ser > 5,000 mg/kg
Óxido de aluminio	Inhalación- Polvo/Niebl a (4 horas)	Rata	LC50 > 2.3 mg/l
Óxido de aluminio	Ingestión:	Rata	LD50 > 5,000 mg/kg
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Ingestión:	Rata	LD50 > 15,000 mg/kg
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Dérmico	compuest os similares	LD50 > 5,000 mg/kg
Solvente refinado de Destilados medios Hidrogenados	Dérmico	Conejo	LD50 > 2,000 mg/kg
Aceite mineral blanco (petróleo)	Dérmico	Conejo	LD50 > 2,000 mg/kg
Solvente refinado de Destilados medios Hidrogenados	Inhalación- Polvo/Niebl a (4 horas)	Rata	LC50 > 5.3 mg/l
Solvente refinado de Destilados medios Hidrogenados	Ingestión:	Rata	LD50 > 5,000 mg/kg
Aceite mineral blanco (petróleo)	Ingestión:	Rata	LD50 > 5,000 mg/kg
Glicerina	Dérmico	Conejo	LD50 estimado para ser > 5,000 mg/kg
Glicerina	Ingestión:	Rata	LD50 > 5,000 mg/kg
Oleato de polialquileno	Dérmico	No disponibl e	LD50 > 5,000 mg/kg
MONOOLEATO DE POLIETILENGLICOL	Dérmico	Conejo	LD50 > 9,800 mg/kg
Oleato de polialquileno	Inhalación- Polvo/Niebl a (4 horas)	Rata	LC50 > 5.1 mg/l
Oleato de polialquileno	Ingestión:	Rata	LD50 20,000 mg/kg
MONOOLEATO DE POLIETILENGLICOL	Ingestión:	Rata	LD50 > 2,000 mg/kg

ETA = estimación de toxicidad aguda

Irritación o corrosión cutáneas

Nombre	Especies	Valor
Óxido de aluminio	Conejo	Sin irritación significativa
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	compuest	Irritante leve
	os	

Page: 7 of 15

	similares	
Solvente refinado de Destilados medios Hidrogenados	Conejo	Sin irritación significativa
Aceite mineral blanco (petróleo)	Conejo	Sin irritación significativa
Glicerina	Conejo	Sin irritación significativa
Oleato de polialquileno	Conejo	Sin irritación significativa
MONOOLEATO DE POLIETILENGLICOL	Conejo	Irritante leve

Irritación/daño grave en los ojos

Nombre	Especies	Valor
Óxido de aluminio	Conejo	Sin irritación significativa
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	compuest	Sin irritación significativa
	os similares	
Solvente refinado de Destilados medios Hidrogenados	Conejo	Irritante leve
Aceite mineral blanco (petróleo)	Conejo	Irritante leve
Glicerina	Conejo	Sin irritación significativa
Oleato de polialquileno	Conejo	Sin irritación significativa
MONOOLEATO DE POLIETILENGLICOL	Conejo	Irritante moderado

Sensibilización:

Sensibilización cutánea

Nombre	Especies	Valor
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	compuest	No clasificado
	os	
	similares	
Solvente refinado de Destilados medios Hidrogenados	Conejillo	No clasificado
	de indias	
Aceite mineral blanco (petróleo)	Conejillo	No clasificado
	de indias	
Glicerina	Conejillo	No clasificado
	de indias	
Oleato de polialquileno	Conejillo	No clasificado
	de indias	

Sensibilización respiratoria

Para el componente o componentes, actualmente no hay información disponible o la información no es suficiente para la clasificación.

Mutagenicidad de células germinales

Nombre	Vía de	Valor
	administ ración	
Óxido de aluminio	In vitro	No es mutágeno
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	In vitro	No es mutágeno
Solvente refinado de Destilados medios Hidrogenados	In vitro	No es mutágeno
Solvente refinado de Destilados medios Hidrogenados	In vivo	No es mutágeno
Aceite mineral blanco (petróleo)	In vitro	No es mutágeno
Oleato de polialquileno	In vitro	No es mutágeno

Carcinogenicidad

Nombre	Vía de administr ación	Especies	Valor
Óxido de aluminio	Inhalación	Rata	No es carcinógeno
Aceite mineral blanco (petróleo)	Dérmico	Ratón	No es carcinógeno
Aceite mineral blanco (petróleo)	Inhalación	Varias especies animales	No es carcinógeno
Glicerina	Ingestión:	Ratón	Existen algunos datos positivos, pero no son suficientes para la clasificación

Page: 8 of 15

Oleato de polialquileno	Ingestión:	Rata	Existen algunos datos positivos, pero no son		
			suficientes para la clasificación		

Toxicidad en la reproducción

Efectos sobre la reproducción y/o sobre el desarrollo

Nombre	Vía de administ ración	Valor	Especies	Resultados de la prueba	Duración de la exposición
Solvente refinado de Destilados medios Hidrogenados	No especifica do	No clasificado para reproducción femenina	Rata	NOAEL No disponible	gestación en la lactancia
Solvente refinado de Destilados medios Hidrogenados	No especifica do	No clasificado para reproducción masculina	Rata	NOAEL No disponible	28 días
Solvente refinado de Destilados medios Hidrogenados	No especifica do	No clasificado para desarrollo	Rata	NOAEL No disponible	durante la gestación
Aceite mineral blanco (petróleo)	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 4,350 mg/kg/día	13 semanas
Aceite mineral blanco (petróleo)	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 4,350 mg/kg/día	13 semanas
Aceite mineral blanco (petróleo)	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 4,350 mg/kg/día	durante la gestación
Glicerina	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 2,000 mg/kg/día	2 generación
Glicerina	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 2,000 mg/kg/día	2 generación
Glicerina	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 2,000 mg/kg/día	2 generación
Oleato de polialquileno	Ingestión:	No clasificado para reproducción femenina	Rata	NOAEL 6,666 mg/kg/día	3 generación
Oleato de polialquileno	Ingestión:	No clasificado para reproducción masculina	Rata	NOAEL 6,666 mg/kg/día	3 generación
Oleato de polialquileno	Ingestión:	No clasificado para desarrollo	Rata	NOAEL 5,000 mg/kg/día	durante la organogénesis

Órganos específicos

Toxicidad en órgano específico - exposición única

Nombre	Vía de administ ración	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Inhalació n	irritación respiratoria	Existen algunos datos positivos, pero no son suficientes para la clasificación	peligros similares en la salud	NOAEL No disponible	

Toxicidad en órgano específico - exposición repetida

Toxicidad en organo es	specifico - e	exposicion repetiua	a			
Nombre	Vía de administr ación	Órganos específicos	Valor	Especies	Resultados de la prueba	Duración de la exposición
Óxido de aluminio	Inhalación	neumoconiosis	Existen algunos datos positivos, pero no son suficientes para la clasificación	Humano	NOAEL No disponible	exposición ocupacional
Óxido de aluminio	Inhalación	fibrosis pulmonar	No clasificado	Humano	NOAEL No	exposición

					disponible	ocupacional
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Inhalación	hígado	No clasificado	Rata	NOAEL 6 mg/l	13 semanas
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Inhalación	riñón o vejiga	No clasificado	Rata	LOAEL 1.5 mg/l	13 semanas
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Inhalación	sistema hematopoyético	No clasificado	Rata	NOAEL 6 mg/l	13 semanas
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Ingestión:	hígado	No clasificado	Rata	NOAEL 1,000 mg/kg/day	13 semanas
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Ingestión:	riñón o vejiga	No clasificado	Rata	LOAEL 100 mg/kg/day	13 semanas
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Ingestión:	sistema hematopoyético ojos	No clasificado	Rata	NOAEL 1,000 mg/kg/day	13 semanas
Aceite mineral blanco (petróleo)	Ingestión:	sistema hematopoyético	No clasificado	Rata	NOAEL 1,381 mg/kg/day	90 días
Aceite mineral blanco (petróleo)	Ingestión:	hígado sistema inmunológico	No clasificado	Rata	NOAEL 1,336 mg/kg/day	90 días
Glicerina	Inhalación	aparato respiratorio corazón hígado riñón o vejiga	No clasificado	Rata	NOAEL 3.91 mg/l	14 días
Glicerina	Ingestión:	sistema endocrino sistema hematopoyético hígado riñón o vejiga	No clasificado	Rata	NOAEL 10,000 mg/kg/day	2 años
Oleato de polialquileno	Ingestión:	corazón sistema endocrino tracto gastrointestinal Hueso, dientes, uñas o cabello sistema hematopoyético hígado sistema inmunológico sistema nervioso riñón o vejiga aparato respiratorio	No clasificado	Rata	NOAEL 4,132 mg/kg/day	90 días

Peligro de aspiración

Nombre	Valor
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	Peligro de aspiración
Solvente refinado de Destilados medios Hidrogenados	Peligro de aspiración
Aceite mineral blanco (petróleo)	Peligro de aspiración

Por favor póngase en contacto en la dirección o el teléfono que aparecen en la primera página de la HDS para obtener información toxicológica adicional sobre este material y/o sus componentes.

SECCIÓN 12: Información ecotoxicológica

La siguiente información puede no ser consistente con la clasificación del material en la Sección 2 si las clasificaciones del ingrediente específico son obligatorias por parte de una autoridad competente. La información adicional que conlleve a la clasificación del material en la Sección 2 está disponible por solicitud; además, los datos del destino ambiental y efectos de los ingredientes pueden no reflejarse en esta sección porque un ingrediente puede estar presente por debajo del límite para etiquetarlo, no se espera que el ingrediente esté disponible en la exposición o no se considera que los datos sean relevantes en la totalidad del material.

12.1. Toxicidad

Peligro acuático agudo:

De conformidad con los criterios de GHS no es tóxico agudo para la vida acuática.

Peligro acuático crónico:

De conformidad con los criterios de GHS no es tóxico crónico para la vida acuática.

Sin datos disponibles de la prueba del producto

Material	N° CAS	Organismo	Tipo	Exposición	Criterio de valoración de la prueba	Resultados de la prueba
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	64742-47-8	Algas verdes	Experimental	72 horas	EL50	> 1,000 mg/l
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	64742-47-8	Trucha arcoíris	Experimental	96 horas	LL50	> 1,000 mg/l
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	64742-47-8	Pulga de agua	Experimental	48 horas	EL50	> 1,000 mg/l
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	64742-47-8	Algas verdes	Experimental	72 horas	NOEL	1,000 mg/l
Óxido de aluminio	1344-28-1	Pez	Experimental	96 horas	LC50	> 100 mg/l
Óxido de aluminio	1344-28-1	Algas verdes	Experimental	72 horas	EC50	> 100 mg/l
Óxido de aluminio	1344-28-1	Pulga de agua	Experimental	48 horas	LC50	> 100 mg/l
Óxido de aluminio	1344-28-1	Algas verdes	Experimental	72 horas	NOEC	> 100 mg/l
Solvente refinado de Destilados medios Hidrogenados	64742-46-7	Algas verdes	Estimado	72 horas	EL50	> 1,000 mg/l
Solvente refinado de Destilados medios Hidrogenados	64742-46-7	Trucha arcoíris	Estimado	96 horas	LL50	> 87,556 mg/l
Solvente refinado de Destilados medios Hidrogenados	64742-46-7	Pulga de agua	Estimado	48 horas	LL50	> 1,000 mg/l
Solvente refinado de Destilados medios Hidrogenados	64742-46-7	Algas verdes	Estimado	72 horas	NOEL	1,000 mg/l
Solvente refinado de Destilados medios Hidrogenados	64742-46-7	Pulga de agua	Estimado	21 días	NOEL	5 mg/l
Aceite mineral blanco (petróleo)	8042-47-5	Pulga de agua	Compuesto análogo		EL50	> 100 mg/l
Aceite mineral blanco (petróleo)	8042-47-5	Mojarra	Experimental	96 horas	LL50	> 100 mg/l
Aceite mineral blanco (petróleo)	8042-47-5	Algas verdes	Compuesto análogo		NOEL	100 mg/l
Aceite mineral blanco (petróleo)	8042-47-5	Pulga de agua	Compuesto análogo		NOEL	> 100 mg/l
Glicerina	56-81-5	Trucha arcoíris	Experimental	96 horas	LC50	54,000 mg/l
Glicerina	56-81-5	Pulga de agua	Experimental	48 horas	LC50	1,955 mg/l
Glicerina	56-81-5	Bacteria	Experimental	16 horas	NOEC	10,000 mg/l
Oleato de polialquileno	Secreto Comercial	Algas verdes	Compuesto análogo	72 horas	EL50	58.84 mg/l

Oleato de polialquileno	Secreto Comercial	Pez cebra	Compuesto análogo	96 horas	LL50	> 100 mg/l
Oleato de polialquileno	Secreto Comercial	Algas verdes	Compuesto análogo	72 horas	EL10	19.05 mg/l
Oleato de polialquileno	Secreto Comercial	Pulga de agua	Compuesto análogo	21 días	NOEL	10 mg/l
MONOOLEATO DE POLIETILENGLI COL	9004-96-0		Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D

12.2. Persistencia y degradabilidad

Material	N° CAS	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO	64742-47-8	Estimado Biodegradación	28 días	Demanda biológica de oxígeno	69 %BOD/ThOD	OCDE 301F - Respirometría manomérica
Óxido de aluminio	1344-28-1	Datos no disponibles- insuficientes	N/D	N/D	N/D	N/D
Solvente refinado de Destilados medios Hidrogenados	64742-46-7	Estimado Biodegradación	28 días	Demanda biológica de oxígeno	74 %BOD/ThOD	OCDE 306 (Diversos)- Biodegradable
Aceite mineral blanco (petróleo)	8042-47-5	Experimental Biodegradación	28 días	Evolución de dióxido de carbono	0 Evolución% CO2 / evolución THCO2	OCDE 301B - Sturm modificada o CO2
Glicerina	56-81-5	Experimental Biodegradación	14 días	Demanda biológica de oxígeno	63 %BOD/ThOD	OCDE 301C - MITI (I)
Oleato de polialquileno	Secreto Comercial	Experimental Biodegradación	28 días	Evolución de dióxido de carbono	61 Evolución% CO2 / evolución THCO2	ISO 14593
MONOOLEATO DE POLIETILENGLI COL	9004-96-0	Datos no disponibles- insuficientes	N/D	N/D	N/D	N/D

12.3. Potencial bioacumulativo

Material	Nº CAS	Tipo de prueba	Duración	Tipo de estudio	Resultados de la prueba	Protocolo
DESTILADOS DE PETRÓLEO LIGERO HIDROTRATADO		Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Óxido de aluminio	1344-28-1	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Solvente refinado de Destilados medios Hidrogenados	64742-46-7	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Aceite mineral blanco (petróleo)	8042-47-5	Los datos no están disponibles o son insuficientes para la clasificación	N/D	N/D	N/D	N/D
Glicerina	56-81-5	Experimental Bioconcentración		Logaritmo del coeficiente de partición octanol/H2O	-1.75	similar to OECD 107
Oleato de	Secreto Comercial	Modelado		Factor de	5	Catalogic™

polialquileno		Bioconcentración		bioacumulación		
Oleato de	Secreto Comercial	Modelado		Logaritmo del	5.61	EPI Suite TM
polialquileno		Bioconcentración		coeficiente de		
				partición		
				octanol/H2O		
MONOOLEATO	9004-96-0	Los datos no están	N/D	N/D	N/D	N/D
DE		disponibles o son				
POLIETILENGLI		insuficientes para				
COL		la clasificación				

12.4. Movilidad en el suelo

Para obtener mayores informes, contacte al fabricante

12.5 Otros efectos adversos

Sin información disponible

SECCIÓN 13: Información sobre la eliminación de los productos

13.1. Métodos de eliminación/desecho

Deseche el contenido/recipiente de conformidad con las reglamentaciones locales, regionales, nacionales, internacionales.

Deseche el producto de desperdicio en una instalación autorizada para desperdicio industrial. Los tambores, tanques o recipientes vacíos para transportar y manipular sustancias químicas peligrosas (sustancias, mezclas o preparaciones químicas clasificadas como peligrosas por las regulaciones correspondientes) deben considerarse, almacenarse y desecharse como desperdicios peligrosos, salvo que las regulaciones de desperdicio correspondientes los hayan definido de alguna otra forma. Consulte a las autoridades de regulación correspondientes para determinar las instalaciones disponibles de tratamiento y desecho.

SECCIÓN 14: Información de transporte

No es peligroso para el transporte.

Transporte Maritimo (IMDG)

Número UN: Ninguno asignado.

Nombre de envío apropiado: Ninguno asignado.

Nombre técnico: Ninguno asignado.

Clase/División de peligro: Ninguno asignado.

Riesgo secundario: Ninguno asignado. Grupo de empaque: Ninguno asignado. Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos:

Ninguno asignado.

Transporte aéreo (IATA)

Número UN: Ninguno asignado.

Nombre de envío apropiado: Ninguno asignado.

Nombre técnico: Ninguno asignado.

Clase/División de peligro: Ninguno asignado.

Riesgo secundario: Ninguno asignado. Grupo de empaque: Ninguno asignado. Cantidad limitada: Ninguno asignado. Contaminante marino: Ninguno asignado.

Nombre técnico del contaminante marino: Ninguno asignado.

Otras descripciones de materiales peligrosos:

Ninguno asignado.

TRANSPORTE TERRESTRE

Prohibido:No relevante **Número UN:**No relevante

Nombre de envío apropiado: No relevante

Nombre técnico: No relevante

Clase/División de peligro: No relevante Riesgo secundario: No relevante Grupo de empaque: No relevante Cantidad limitada: No relevante Contaminante marino: No relevante

Nombre técnico del contaminante marino: No relevante Otras descripciones de materiales peligrosos: No relevante

Para mayor información consulte la Hoja Resumen de Seguridad para Transporte Terrestre de Materiales Peligrosos 3M.

Las clasificaciones para el transporte se proporcionan como un servicio al cliente. Para envíos, USTED es responsable de cumplir con todas las leyes y regulaciones correspondientes, que incluyen la clasificación apropiada de transporte y empaquetado. Las clasificaciones para el transporte se basan en la fórmula del producto, empaque, políticas de 3M y conocimiento por parte de 3M de las regulaciones vigentes apropiadas. 3M no garantiza la precisión de la presente información de clasificación. Esta información sólo aplica para la clasificación de transporte y no aplica para los requisitos de empaquetado, etiquetado o comercialización. La información anterior sólo es para referencia. Si realiza envíos por aire o mar, USTED está advertido de revisar y cumplir con los requisitos regulatorios correspondientes.

SECCIÓN 15: Información reglamentaria

15.1. Regulaciones/legislación de seguridad, salud y ambiental específicas para la sustancia o mezcla

Estatus de inventario global

Para obtener más información, contacte a 3M. Los componentes de este producto cumplen con los requisitos de notificación química de TSCA. Todos los componentes requeridos de este producto están listados en la parte activa del Inventario TSCA.

SECCIÓN 16: Otra información

Clasificación de peligro NFPA

Salud: 1 Inflamabilidad: 1 Inestabilidad: 0 Peligros especiales: Ninguno

Las clasificaciones de peligro de la Asociación Nacional de Protección contra Incendios (NFPA) están diseñadas para que las use el personal de respuesta en emergencias para atender los peligros que se presentan a corto plazo, exposición aguda a un material en condiciones de incendio, salpicadura o emergencias similares. Las clasificaciones de peligro se basan principalmente en las propiedades físicas y tóxicas inherentes del material, aunque también incluyen las propiedades tóxicas de los productos de combustión o descomposición que se sabe se generan en cantidades significativas.

La información se considera correcta, pero no es exhaustiva y solo se utilizará como orientación. Se basa en el conocimiento actual de la sustancia química o mezcla y es aplicable a las precauciones de seguridad adecuadas para el producto.

LIMITACIÓN DE RESPONSABILIDADES: La información provista en esta Hoja de Datos de Seguridad (HDS por sus siglas en español) representa el mejor saber y entender de 3M a la fecha de su publicación, por lo que 3M no será responsable de los posibles daños, perjuicios o pérdidas, derivados de su uso, excepto cuando la ley lo establezca. Los usos no descritos aquí o la combinación con otros materiales no fueron considerados en la preparación de este documento. Por esta razón, es responsabilidad del usuario de esta información que realice su propia evaluación para asegurarse la adecuación del producto para un propósito en particular. Esta HDS tiene el objetivo de transmitir información sobre salud y seguridad. El importador autorizado es responsable de cumplir los requisitos regulatorios, incluidos pero no limitados a registro/ notificaciones del producto, rastreo del volumen de sustancias y posibles registros/notificaciones de sustancias controladas.

Pulidor 3M® Premium Finesse-it® Serie 315, 77197, 52061								
Las HDS de 3M México están disponibles en www.3M.com.mx								
2 do 12 do 1								

Page: 15 of 15