

Sicherheitsdatenblatt

Copyright,2025, 3M Company Alle Rechte vorbehalten. Das Kopieren und / oder Herunterladen dieser Informationen zum Zweck der ordnungsgemäßen Verwendung von 3M-Produkten ist gestattet, sofern: (1) die Informationen ohne vorherige schriftliche Zustimmung von 3M vollständig und ohne Änderungen kopiert werden, und (2) weder die Kopie noch das Original wird weiterverkauft oder anderweitig vertrieben, um daraus einen Gewinn zu erzielen.

 Dokument:
 44-6229-7
 Version:
 1.02

 Überarbeitet am:
 22/08/2025
 Ersetzt Ausgabe vom:
 23/05/2025

Version der Angaben zum Transport (Abschnitt 14):

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006 (REACH) und ihren Änderungen

BEZEICHNUNG DES STOFFES/DER ZUBEREITUNG UND DES UNTERNEHMENS

1.1. Produktidentifikator

3M[™] OEM Match Epoxy Seam Sealer, PN 08522, Beige

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Identifizierte Verwendungen

Automotive/Fahrzeugbau

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Anschrift: 3M Österreich GmbH

Am Europlatz 2 A-1120 Wien

Tel. / Fax.: +49-2131-14-2914; Fax.: +49-2131-14-3587 **E-Mail:** CER-productstewardship@mmm.com

Internet: www.3m.com/at

1.4. Notrufnummer

Notruf (Tag und Nacht): Tel.Nr. +43 1 406 43 43 Vergiftungsinformationszentrale der Gesundheit Österreich GmbH

Dieses Produkt besteht aus mehreren Untereinheiten. Auf dieser Seite finden Sie eine Zusammenstellung der Einheiten, die ein Sicherheitsdatenblatt erfordern. Diese Sicherheitsdatenblätter können Sie über die folgenden Dokumentennummern zuordnen:

44-4909-6, 44-4836-1

ANGABEN ZUM TRANSPORT

Die Angaben zum Transport entnehmen Sie bitte den Sicherheitsdatenblättern der Untereinheiten (Abschnitt 14).

Einstufung für KitA/B

2.1. Einstufung des Stoffs oder Gemischs CLP VERORDNUNG (EG) Nr. 1272/2008

Einstufung:

Ätz-/Reizwirkung auf die Haut, Kategorie 2 - Skin Irrit. 2; H315 Schwere Augenschädigung/Augenreizung, Kategorie 2 - Eye Irrit. 2; H319 Sensibilisierung der Haut, Kategorie 1 - Skin Sens. 1; H317 Chronisch gewässergefährdend, Kategorie 2 - Aquatic Chronic 2; H411

Den vollständigen Text der hier verwendeten H-Sätze finden Sie in Abschnitt 16 dieses Sicherheitsdatenblattes.

2.2. Kennzeichnungselemente

CLP VERORDNUNG (EG) Nr. 1272/2008

Signalwort

ACHTUNG.

Kennbuchstabe und Gefahrenbezeichnung:

GHS07 (Ausrufezeichen)GHS09 (Umwelt)

Gefahrenpiktogramm(e)

Enthält:

4,4'-Methylen-diphenyldiglycidylether; Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer; Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether; 3,6-Diazaoctanethylendiamin; Triethylentetramin, propoxyliert.

Gefahrenhinweise (H-Sätze):

H315 Verursacht Hautreizungen.

H319 Verursacht schwere Augenreizung.

H317 Kann allergische Hautreaktionen verursachen.

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

Sicherheitshinweise (P-Sätze)

Allgemeines:

P102 Darf nicht in die Hände von Kindern gelangen.

Prävention:

P273 Freisetzung in die Umwelt vermeiden.

P280E Schutzhandschuhe tragen.

Reaktion:

P305 + P351 + P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser spülen.

Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen.

P333 + P313 Bei Hautreizung oder -ausschlag: Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.

P391 Verschüttete Mengen aufnehmen.

Entsorgung:

P501 Inhalt/Behälter einer Entsorgung gemäß lokalen/regionalen/nationalen Vorschriften zuführen.

3MTM OEM Match Epoxy Seam Sealer, PN 08522, Beige

Angaben zu den Bestandteilen mit unbekannter Toxizität und Gewässergefährdung siehe Sicherheitsdatenblatt (www.3m.com/msds).

Änderungsgründe: Ohne Aktualisierung.

Seite: 3 von 3

Sicherheitsdatenblatt

Copyright,2025, 3M Company Alle Rechte vorbehalten. Das Kopieren und / oder Herunterladen dieser Informationen zum Zweck der ordnungsgemäßen Verwendung von 3M-Produkten ist gestattet, sofern: (1) die Informationen ohne vorherige schriftliche Zustimmung von 3M vollständig und ohne Änderungen kopiert werden, und (2) weder die Kopie noch das Original wird weiterverkauft oder anderweitig vertrieben, um daraus einen Gewinn zu erzielen.

 Dokument:
 44-4836-1
 Version:
 2.00

 Überarbeitet am:
 26/08/2025
 Ersetzt Ausgabe vom:
 10/04/2025

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006 (REACH) und ihren Änderungen

ABSCHNITT 1: Bezeichnung des Stoffs bzw. des Gemischs und des Unternehmens

1.1. Produktidentifikator

3MTM OEM Match Epoxy Seam Sealer, PNs 08528, 08526, 08524, 08522 (Part A)

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Identifizierte Verwendungen

Automotive/Fahrzeugbau

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Anschrift: 3M Österreich GmbH

Am Europlatz 2

A-1120 Wien

Tel. / Fax.: +49-2131-14-2914; Fax.: +49-2131-14-3587 **E-Mail:** CER-productstewardship@mmm.com

Internet: www.3m.com/at

1.4. Notrufnummer

Notruf (Tag und Nacht): Tel.Nr. +43 1 406 43 43 Vergiftungsinformationszentrale der Gesundheit Österreich GmbH

ABSCHNITT 2: Mögliche Gefahren

2.1. Einstufung des Stoffs oder Gemischs

CLP VERORDNUNG (EG) Nr. 1272/2008

Zur Einstufung der Gesundheitsgefahren und Umweltgefahren dieses Materials wurde die Berechnungsmethode auf Basis der Bestandteile angewandt; außer in Fällen, in denen Testdaten verfügbar sind oder die physikalische Form die Einstufung beeinflusst. Die Einstufung(en), die auf Testdaten oder physikalischer Form basieren, sind nachstehend gegebenenfalls angegeben.

Einstufung:

Sensibilisierung der Haut, Kategorie 1 - Skin Sens. 1; H317 Chronisch gewässergefährdend, Kategorie 2 - Aquatic Chronic 2; H411

Den vollständigen Text der hier verwendeten H-Sätze finden Sie in Abschnitt 16 dieses Sicherheitsdatenblattes.

2.2. Kennzeichnungselemente

CLP VERORDNUNG (EG) Nr. 1272/2008

Signalwort

ACHTUNG.

Kennbuchstabe und Gefahrenbezeichnung:

GHS07 (Ausrufezeichen)GHS09 (Umwelt)

Gefahrenpiktogramm(e)

Produktidentifikator (enthält):

Chemischer Name	CAS-Nr.	EG-Nummer	Gew%
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	72244-98-5	701-196-7	60 - 100
Triethylentetramin, propoxyliert	26950-63-0	500-055-5	< 2
3,6-Diazaoctanethylendiamin	112-24-3	203-950-6	< 0,5

Gefahrenhinweise (H-Sätze):

H317 Kann allergische Hautreaktionen verursachen.

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

Sicherheitshinweise (P-Sätze)

Prävention:

P273 Freisetzung in die Umwelt vermeiden.

P280E Schutzhandschuhe tragen.

Reaktion:

P333 + P313 Bei Hautreizung oder -ausschlag: Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.

Enthält 5% Bestandteile mit unbekannter Gewässergefährdung.

2.3. Sonstige Gefahren

Bei Personen, die bereits auf Amine sensibilisiert sind, kann eine Kreuzsensibilisierung gegenüber anderen Aminen auftreten. Dieses Material enthält keine Stoffe, die als persistent, bioakkumulierbar und toxisch (PBT) oder sehr persistent und sehr bioakkumulierbar (vPvB) bewertet werden.

ABSCHNITT 3: Zusammensetzung / Angaben zu Bestandteilen

3.1. Stoffe

Nicht anwendbar.

3.2. Gemische

Chemischer Name	Identifikator(en)	%	Einstufung gemäß Verordnung (EG) Nr. 1272/2008 [CLP]
Poly[oxy(methyl-1,2-ethandiyl)], alphahydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	CAS-Nr. 72244-98-5 EG-Nr. 701-196-7	60 - 100	Aquatic Chronic 3, H412 Skin Sens. 1B, H317
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	CAS-Nr. 67762-90-7	3 - 7	Bestandteil ohne Einstufung nach Verordnung (EG) Nr. 1272/2008
Triethylentetramin, propoxyliert	CAS-Nr. 26950-63-0 EG-Nr. 500-055-5	< 2	Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1B, H317 Aquatic Chronic 2, H411
Trizinkbis(orthophosphat)	CAS-Nr. 7779-90-0 EG-Nr. 231-944-3	< 1	Aquatic Acute 1, H400,M=10 Aquatic Chronic 1, H410,M=10
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	CAS-Nr. 3033-62-3 EG-Nr. 221-220-5	0,1 - 1	EUH071 Acute Tox. 3, H311 Acute Tox. 4, H332 Acute Tox. 4, H332 Acute Tox. 4, H302 Skin Corr. 1B, H314 Eye Dam. 1, H318
Titandioxid	CAS-Nr. 13463-67-7 EG-Nr. 236-675-5	0,1 - 1	Carc. 2, H351 (Einatmen)
3,6-Diazaoctanethylendiamin	CAS-Nr. 112-24-3 EG-Nr. 203-950-6	< 0,5	Acute Tox. 4, H312 Skin Corr. 1B, H314 Skin Sens. 1, H317 Aquatic Chronic 3, H412 Acute Tox. 4, H302 Eye Dam. 1, H318

Den vollständigen Text der hier verwendeten H-Sätze finden Sie in Abschnitt 16 dieses Sicherheitsdatenblattes.

Informationen bezüglich der Expositionsgrenzwerte, der persistenten, bioakkumulierbaren und toxischen (PBT) bzw. der sehr persistenten und sehr bioakkumulierbaren (vPvB) Eigenschaften der Inhaltsstoffe finden Sie in den Abschnitten 8 und 12 dieses Sicherheitsdatenblattes.

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Einatmen:

Die betroffene Person an die frische Luft bringen. Bei Unwohlsein ärztliche Hilfe hinzuziehen.

Hautkontakt:

Sofort mit Wasser und Seife waschen. Kontaminierte Kleidung ausziehen und vor erneutem Tragen waschen. Wenn Anzeichen / Symptome zunehmen, ärztliche Hilfe hinzuziehen.

Augenkontakt:

Sofort mit viel Wasser ausspülen. Vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen. Bei anhaltenden Anzeichen / Symptomen ärztliche Hilfe hinzuziehen.

Verschlucken:

3MTM OEM Match Epoxy Seam Sealer, PNs 08528, 08526, 08524, 08522 (Part A)

Mund ausspülen. Bei Unwohlsein ärztliche Hilfe hinzuziehen.

4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Die wichtigsten Symptome und Wirkungen, die auf der CLP-Einstufung basieren, sind:

Allergische Hautreaktionen (Rötung, Schwellung, Blasenbildung und Juckreiz).

4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Nicht anwendbar.

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1. Löschmittel

Bei Brand: Löschmittel für gewöhnlich brennbare Materialien wie z.B. Wasser oder Schaum zum Löschen verwenden.

5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Kein inhärenter Bestandteil / inhärentes Merkmal in diesem Produkt.

Gefährliche Zersetzungs- und Nebenprodukte

Stoff
Kohlenmonoxid
Kohlendioxid

Bedingung

Während der Verbrennung Während der Verbrennung

5.3. Hinweise für die Brandbekämpfung

Vollschutzanzug tragen, einschließlich Helm, umluftunabhängigen Atemschutz (Überdruck), dichtschließende Jacke und Hose, Arm-, Taillen-und Beinschutz, Gesichtsmaske und Schutz für expositionsgefährdete Kopfteile.

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Umgebung räumen. Raum belüften. Bei größeren Leckagen bzw. bei Freisetzung in geschlossenen Räumen ist eine Absaugvorrichtung zu verwenden, um die Dämpfe nach dem Stand der Technik abzusaugen bzw. zu verdünnen. Verwenden Sie persönliche Schutzausrüstung gemäß den Ergebnissen einer Expositionsbeurteilung. Siehe Abschnitt 8.2.2. für persönliche Schutzausrüstungsempfehlungen. Wenn die erwartete Exposition infolge einer unbeabsichtigten Freisetzung die Schutzfähigkeiten der in Abschnitt 8.2.2. aufgeführten persönliche Schutzausrüstung übersteigt oder unbekannt ist, persönliche Schutzausrüstung auswählen, die ein angemessenes Schutzniveau bietet. Berücksichtigen Sie dabei die physikalischen und chemischen Gefahren des Materials. Beispiele für Kombination der persönlichen Schutzausrüstung für den Notfalleinsatz könnten sein: das Tragen von Feuerwehrschutzkleidung bei der Freisetzung von entzündbarem Material; das Tragen von Chemikalienschutzkleidung, wenn das verschüttete Material ätzend, sensibilisierend oder stark hautreizend ist oder über die Haut absorbiert werden kann; oder das Tragen eines Pressluftatmers bei Chemikalien, wenn die Gefahr besteht, dass diese eingeatmet werden. Siehe Abschnitte 2 und 11 für Informationen zu physikalischen und gesundheitlichen Gefahren.

6.2. Umweltschutzmaßnahmen

Freisetzung in die Umwelt vermeiden.

6.3. Methoden und Material für Rückhaltung und Reinigung

Verschüttetes/ausgetretenes Material sammeln. In einen UN-geprüften Behälter geben und verschließen. Rückstände aufwischen. Behälter verschließen. Entsorgung des gesammelten Materials so schnell wie möglich gemäß den lokalen / nationalen Vorschriften.

6.4. Verweis auf andere Abschnitte

Zusätzliche Informationen entnehmen Sie bitte Abschnitt 8 und 13.

ABSCHNITT 7: Handhabung und Lagerung

7.1. Schutzmaßnahmen zur sicheren Handhabung

Darf nicht in die Hände von Kindern gelangen. Vor Gebrauch alle Sicherheitshinweise lesen und verstehen. Einatmen von Staub/Rauch/Gas/Nebel/Dampf/Aerosol vermeiden. Nicht in die Augen, auf die Haut oder auf die Kleidung gelangen lassen. Bei Gebrauch nicht essen, trinken oder rauchen.

Nach Gebrauch gründlich waschen.

Kontaminierte Arbeitskleidung soll am Arbeitsplatz verbleiben. Freisetzung in die Umwelt vermeiden. Kontaminierte Kleidung vor erneutem Tragen waschen. Vorgeschriebene persönliche Schutzausrüstung verwenden.

7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

Nicht in der Nähe von Wärmequellen lagern.

7.3. Spezifische Endanwendungen

Siehe Abschnitt 7.1. Maßnahmen zur sicheren Handhabung und 7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung der Unverträglichkeiten. Siehe Abschnitt 8 Begrenzung und Überwachung der Exposition / persönliche Schutzausrüstung.

Abschnitt 8: Begrenzung und Überwachung der Exposition / Persönliche Schutzausrüstungen

8.1. Zu überwachende Parameter

Expositionsgrenzwerte

Wenn ein Bestandteil, der in Abschnitt 3 gelistet ist, nicht in der folgenden Tabelle erscheint, ist für diesen Bestandteil kein Grenzwert verfügbar.

Chemischer Name	CAS-Nr.	Quelle	Grenzwert	Zusätzliche Hinweise
Titandioxid	13463-67-7	Österr.	(Alveolarstaub) TMW: 5	Anhang IIIB: Stoffe mit
		Grenzwerte-VO	mg/m3 A; 10 mg/m3 A; 60	begründetem Verdacht
			Miw, 2x	auf krebserzeugendes
				Potential

Österr. Grenzwerte-VO: TMW (Tagesmittelwert), KZW (Kurzzeitwert), A (alveolengängiger Anteil), E (einatembare Fraktion), Miw (als Mittelwert über dem Beurteilungszeitraum), Mow (als Momentanwert), Häufigkeit/Schicht.

Österr. TRK-Werte : technische Richtkonzentrationen für jene gesundheitsgefährdenden Arbeitsstoffe, für die keine als unbedenklich anzusehende Konzentration angegeben werden kann

MAK = maximale Arbeitsplatzkonzentration

AGW = Arbeitsplatzgrenzwert

KZW: Kurzzeitgrenzwert

CEIL: Höchstwert, der zu keinem Zeitpunkt bei der Arbeit überschritten werden darf.

Empfohlene Überwachungsverfahren: Geeignete Analysenverfahren sind z.B. in der Zusammenstellung "Empfohlene Analysenverfahren für Arbeitsplatzmessungen" der deutschen Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) oder in der Arbeitsmappe "Messung von Gefahrstoffen" des Instituts für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) enthalten. Darüber hinaus enthält die Online-Datenbank "GESTIS—Analysenverfahren für chemische Substanzen" des Instituts für Arbeitsschutz (IFA) für zahlreiche Stoffe anerkannte Meßverfahren. Insbesondere für organische Verbindungen werden auch häufig die Methoden des National Institute for Occupational Safety and Health (NIOSH, USA) herangezogen.

8.2. Begrenzung und Überwachung der Exposition

8.2.1. Geeignete technische Steuerungseinrichtungen

Hohe Luftwechselrate und/oder lokale Absaugung erforderlich um sicher zustellen, dass die vorgeschriebenen Grenzwerte für die Exposition von Luftschadstoffen und/oder Staub, Rauch, Gas, Nebel, Dämpfen oder Sprühnebel eingehalten werden. Wenn die Belüftung nicht ausreicht, Atemschutzgerät verwenden.

8.2.2. Individuelle Schutzmaßnahmen, zum Beispiel persönliche Schutzausrüstung

Augen-/ Gesichtsschutz

Das Tragen einer Schutzbrille ist nicht erforderlich.

Hautschutz

Handschutz und sonstige Schutzmaßnahmen

Auswahl und Gebrauch von Schutzhandschuhen und Schutzkleidung sollte auf der Grundlage einer Arbeitsbereichsanalyse erfolgen. Die Auswahl sollte auf der Basis von Faktoren wie Expositionswerten, Konzentration des Stoffes bzw. Gemisches, Häufigkeit und Dauer der Exposition, physikalischen Bedingungen wie z.B. der Temperatur und anderen Verwendungsbedingungen erfolgen. Zur Auswahl geeigneter Werkstoffe bitte Hersteller von Körperschutzmitteln konsultieren. Hinweis: Zur Verbesserung der Fingerfertigkeit kann ein Nitril-Handschuh über einem Polymerlaminat-Handschuh getragen werden.

Schutzhandschuhe aus folgendem Material werden empfohlen:

StoffMaterialstärke (mm)DurchbruchszeitPolymerlaminat (z.B.Keine Daten verfügbar.Keine Daten verfügbar.

Polyethylennylon, 5-lagiges Laminat)

Anwendbare Normen / Standards

Schutzhandschuhe verwenden, die nach EN 374 getestet sind.

Wenn dieses Produkt in einer Weise verwendet wird, die ein höheres Expositionspotenzial aufweist (z. B. Sprühen, hohes Spritzpotenzial usw.), kann die Verwendung einer Schutzschürze erforderlich sein. Siehe empfohlene Handschuhmaterialien, um geeignete Schürzenmaterialien zu bestimmen. Steht ein Handschuhmaterial nicht als Schürze zur Verfügung, eignet sich Polymerlaminat.

Atemschutz

Eine Arbeitsbereichsanalyse ist erforderlich um zu entscheiden, ob die Verwendung einer Filtermaske erforderlich ist. Ist der Einsatz einer Filtermaske erforderlich, sollte die Verwendung im Rahmen eines vollständigen Atemschutzprogrammes erfolgen. Unter Berücksichtigung der Ergebnisse der Arbeitsbereichsanalyse können die folgenden Filtermaskentypen eingesetzt werden, um die Exposition über die Atemwege zu reduzieren:

Atemschutzhalbmaske oder -vollmaske mit luftreinigendem Filter gegen organische Dämpfe und Partikel.

Für Fragen über die Eignung für eine spezielle Situation wenden Sie sich an den Hersteller der Filtermaske.

Anwendbare Normen / Standards

Atemschutz nach EN 140 oder EN 136 verwenden: Filter Typ A & P

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Aggregatzustand	Feststoff		
Weitere Angaben zum Aggregatzustand:	Paste		
Farbe	cremefarben		
Geruch	Leichter Mercaptangeruch		
Geruchsschwelle	Keine Daten verfügbar.		
Schmelzpunkt/Gefrierpunkt	Keine Daten verfügbar.		
Siedepunkt oder Siedebeginn und Siedebereich	Nicht anwendbar.		
Entzündbarkeit	Nicht anwendbar.		
Untere Explosionsgrenze (UEG)	Nicht anwendbar.		
Obere Explosionsgrenze (OEG)	Nicht anwendbar.		
Flammpunkt	> 93,3 °C [Testmethode:geschlosser Tiegel]		

Zündtemperatur	Keine Daten verfügbar.		
Zersetzungstemperatur	Keine Daten verfügbar.		
pH-Wert	Stoff/Gemisch ist nicht löslich (in Wasser)		
Kinematische Viskosität	Keine Daten verfügbar.		
Löslichkeit in Wasser	Leicht, weniger als 10%		
Löslichkeit (ohne Löslichkeit in Wasser)	Keine Daten verfügbar.		
Verteilungskoeffizient n-Oktanol/Wasser (log-Wert)	Keine Daten verfügbar.		
Dampfdruck	Nicht anwendbar.		
Dichte	1,2 kg/l		
Relative Dichte	1,18 [Referenzstandard: Wasser = 1]		
Relative Dampfdichte	Nicht anwendbar.		
Partikeleigenschaften	Nicht anwendbar.		

9.2. Sonstige Angaben

9.2.2. Sonstige sicherheitstechnische Kenngrößen

Flüchtige organische Bestandteile (EU)

Verdampfungsgeschwindigkeit

Molekulargewicht

Keine Daten verfügbar.

Nicht anwendbar.

Keine Daten verfügbar.

ABSCHNITT 10: Stabilität und Reaktivität

10.1. Reaktivität

Von diesem Material wird erwartet, dass es bei normalen Gebrauchsbedingungen nicht reaktiv ist.

10.2. Chemische Stabilität

Stabil.

10.3. Möglichkeit gefährlicher Reaktionen

Gefährliche Polymerisation tritt nicht auf.

10.4. Zu vermeidende Bedingungen

Keine bekannt.

10.5. Unverträgliche Materialien

Keine bekannt.

10.6. Gefährliche Zersetzungsprodukte

<u>Stoff</u> <u>Bedingung</u>

Keine bekannt.

Siehe Abschnitt 5.2 Gefährliche Zersetzungs- und Nebenprodukte während der Verbrennung.

ABSCHNITT 11: Toxikologische Angaben

Die folgenden Informationen können von der Einstufung des Produktes in Abschnitt 2 und / oder von der Einstufung einzelner Inhaltsstoffe in Abschnitt 3 abweichen, die von der zuständigen europäischen Behörde festgelegt worden sind. Die Angaben in Abschnitt 11 basieren auf den UN-GHS Berechnungsregeln und Einstufungen, die aus interne Gefährdungsbeurteilungen abgeleitet wurden.

11.1. Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

Anzeichen und Symptome nach Exposition

Basierend auf Testdaten und / oder Informationen über die Inhaltsstoffe kann dieses Produkt die folgenden Auswirkungen auf die Gesundheit haben:

Einatmen:

Reizung der Atemwege: Anzeichen/Symptome können Husten, Niesen, Nasenlaufen, Kopfschmerzen, Heiserkeit und Hals-/Nasenschmerzen sein. Kann zusätzliche gesundheitliche Auswirkungen haben (siehe unten).

Hautkontakt:

Leichte Hautreizung: Anzeichen/Symptome können lokale Rötung, Schwellung, Juckreiz und trockene Haut sein. Allergische Hautreaktionen: Anzeichen/Symptome können Rötung, Schwellung, Blasenbildung und Juckreiz einschließen.

Augenkontakt:

Bei bestimmungsgemäßer Verwendung dieses Produktes ist bei zufälligem Augenkontakt keine signifikante Augenreizung zu erwarten.

Verschlucken:

Kann bei Verschlucken gesundheitsschädlich sein. Reizungen im gastrointestinalen Bereich: Anzeichen/Symptome können Unterleibsschmerzen, Magenverstimmung, Übelkeit, Erbrechen und Durchfall einschließen.

Zusätzliche gesundheitliche Auswirkungen:

Informationen zur Karzinogenität:

Enthält eine oder mehrere Chemikalien mit einem krebserzeugenden Potenzial.

Zusätzliche Information

Bei Personen, die bereits auf Amine sensibilisiert sind, kann eine Kreuzsensibilisierung gegenüber anderen Aminen auftreten.

Angaben zu folgenden relevanten Gefahrenklassen

Wenn ein Bestandteil, der in Abschnitt 3 gelistet ist, nicht in den folgenden Tabellen erscheint, sind entweder keine Daten verfügbar oder die vorliegenden Daten reichen nicht für eine Einstufung aus.

Akute Toxizität

Name	Expositions weg	Art	Wert
Produkt	Dermal		Keine Daten verfügbar; berechneter ATE >5.000 mg/kg
Produkt	Verschlucke n		Keine Daten verfügbar; berechneter ATE >2.000 - =5.000 mg/kg
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	Dermal	Kaninche n	LD50 > 10.200 mg/kg
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	Verschlucke n	Ratte	LD50 2.600 mg/kg
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Dermal	Kaninche n	LD50 > 5.000 mg/kg
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Inhalation Staub / Nebel (4 Std.)	Ratte	LC50 > 0,691 mg/l
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Verschlucke n	Ratte	LD50 > 5.110 mg/kg
Triethylentetramin, propoxyliert	Dermal	Ratte	LD50 2.150 mg/kg
Triethylentetramin, propoxyliert	Verschlucke n	Ratte	LD50 4.500 mg/kg
Trizinkbis(orthophosphat)	Dermal		LD50 abgeschätzt > 5.000 mg/kg
Trizinkbis(orthophosphat)	Verschlucke n	Ratte	LD50 > 5.000 mg/kg

N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	Dermal	Kaninche n	LD50 311 mg/kg
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	Inhalation Staub / Nebel (4 Std.)	Ratte	LC50 > 3,4 mg/l
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	Inhalation Dampf (4 Std.)	Ratte	LC50 > 2,2 mg/l
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	Verschlucke n	Ratte	LD50 571 mg/kg
Titandioxid	Dermal	Kaninche n	LD50 > 10.000 mg/kg
Titandioxid	Inhalation Staub / Nebel (4 Std.)	Ratte	LC50 > 6,82 mg/l
Titandioxid	Verschlucke n	Ratte	LD50 > 10.000 mg/kg
3,6-Diazaoctanethylendiamin	Dermal	Ratte	LD50 1.465 mg/kg
3,6-Diazaoctanethylendiamin	Verschlucke n	Ratte	LD50 1.591 mg/kg

ATE = Schätzwert Akuter Toxizität

Ätz-/Reizwirkung auf die Haut

Name	Art	Wert
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	Kaninche n	Keine signifikante Reizung
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Kaninche	Keine signifikante Reizung
	n	
Triethylentetramin, propoxyliert	Kaninche	Reizend
	n	
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	Kaninche	Ätzend
	n	
Titandioxid	Kaninche	Keine signifikante Reizung
	n	
3,6-Diazaoctanethylendiamin	Kaninche	Ätzend
	n	

Schwere Augenschädigung/-reizung

Name	Art	Wert
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	Kaninche n	Leicht reizend
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Kaninche n	Keine signifikante Reizung
Triethylentetramin, propoxyliert	Kaninche n	Schwere Augenreizung
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	Kaninche n	Ätzend
Titandioxid	Kaninche n	Keine signifikante Reizung
3,6-Diazaoctanethylendiamin	Kaninche n	Ätzend

Sensibilisierung der Haut

ounding in the contract of the			
Name	Art	Wert	
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	Maus	Sensibilisierend	
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Mensch und Tier.	Nicht eingestuft	
Triethylentetramin, propoxyliert	Maus	Sensibilisierend	

N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	mehrere	Nicht eingestuft
	Tierarten	
Titandioxid	Mensch	Nicht eingestuft
	und Tier.	
3,6-Diazaoctanethylendiamin	Meersch	Sensibilisierend
	weinchen	

Sensibilisierung der Atemwege

Für den Bestandteil / die Bestandteile sind zurzeit entweder keine Daten verfügbar oder die vorliegenden Daten reichen nicht für eine Einstufung aus.

Keimzellmutagenität

Name	Expositio nsweg	Wert
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	in vitro	Nicht mutagen
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	in vitro	Nicht mutagen
Triethylentetramin, propoxyliert	in vitro	Die vorliegenden Daten reichen nicht für eine Einstufung aus.
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	in vitro	Nicht mutagen
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	in vivo	Nicht mutagen
Titandioxid	in vitro	Nicht mutagen
Titandioxid	in vivo	Nicht mutagen
3,6-Diazaoctanethylendiamin	in vivo	Nicht mutagen
3,6-Diazaoctanethylendiamin	in vitro	Die vorliegenden Daten reichen nicht für eine Einstufung aus.

Karzinogenität

Name	Expositio	Art	Wert
	nsweg		
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Keine	Maus	Die vorliegenden Daten reichen nicht für eine
	Angabe		Einstufung aus.
Titandioxid	Verschluc	mehrere	Nicht krebserregend
	ken	Tierarten	-
Titandioxid	Inhalation	Ratte	Karzinogen
3,6-Diazaoctanethylendiamin	Dermal	Maus	Nicht krebserregend

Reproduktion stoxizit "at

Wirkungen auf die Reproduktion und /oder Entwicklung

Name	Expositio nsweg	Wert	Art	Ergebnis	Expositionsd auer
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Verschluc ken	Nicht eingestuft bzgl. weiblicher Reproduktion.	Ratte	NOAEL 509 mg/kg/Tag	1 Generation
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Verschluc ken	Nicht eingestuft bzgl. männlicher Reproduktion.	Ratte	NOAEL 497 mg/kg/Tag	1 Generation
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Verschluc ken	Nicht eingestuft bzgl. der Entwicklung.	Ratte	NOAEL 1.350 mg/kg/Tag	Während der Organentwick lung
Triethylentetramin, propoxyliert	Verschluc ken	Nicht eingestuft bzgl. weiblicher Reproduktion.	Ratte	NOAEL 750 mg/kg/Tag	Vor der Laktation
Triethylentetramin, propoxyliert	Verschluc ken	Nicht eingestuft bzgl. männlicher Reproduktion.	Ratte	NOAEL 750 mg/kg/Tag	43 Tage
Triethylentetramin, propoxyliert	Verschluc ken	Nicht eingestuft bzgl. der Entwicklung.	Ratte	NOAEL 750 mg/kg/Tag	Vor der Laktation
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	Dermal	Nicht eingestuft bzgl. der Entwicklung.	Kaninche n	NOAEL 12 mg/kg/Tag	Während der Organentwick lung
3,6-Diazaoctanethylendiamin	Dermal	Nicht eingestuft bzgl. der Entwicklung.	Kaninche n	NOAEL 125 mg/kg/Tag	Während der Organentwick lung
3,6-Diazaoctanethylendiamin	Verschluc ken	Nicht eingestuft bzgl. der Entwicklung.	Ratte	NOAEL 750 mg/kg/Tag	Während der Organentwick lung

0.11.10

Spezifische Zielorgan-Toxizität

Spezifische Zielorgan-Toxizität bei einmaliger Exposition

Name	Expositio nsweg	Spezifische Zielorgan- Toxizität	Wert	Art	Ergebnis	Expositionsd auer
Triethylentetramin, propoxyliert	Inhalation	Reizung der Atemwege	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	gleicharti ge Gesundh eitsgefah r	NOAEL nicht erhältlich	
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	Inhalation	Reizung der Atemwege	Kann die Atemwege reizen.	gleicharti ge Gesundh eitsgefah r	NOAEL Nicht verfügbar.	
3,6- Diazaoctanethylendiamin	Inhalation	Reizung der Atemwege	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	gleicharti ge Gesundh eitsgefah	NOAEL Nicht verfügbar.	

Spezifische Zielorgan-Toxizität bei wiederholter Exposition

Name	Expositio nsweg	Spezifische Zielorgan- Toxizität	Wert	Art	Ergebnis	Expositionsd auer
Poly[oxy(methyl-1,2- ethandiyl)], alpha-hydro- omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)- 1,3-propandiol (4:1), 2- hydroxy-3- mercaptopropylether	Verschluc ken	Blutbildendes System	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	Ratte	NOAEL 75 mg/kg/Tag	90 Tage
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	Verschluc ken	Leber	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	Ratte	NOAEL 250 mg/kg/Tag	90 Tage
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	Verschluc ken	Hormonsystem Herz Haut Immunsystem Nervensystem Augen Niere und/oder Blase Atmungssystem Vascular-System	Nicht eingestuft	Ratte	NOAEL 1.000 mg/kg/Tag	90 Tage
Siloxane und Silicone, di- Me, Reaktionsprodukt mit Siliciumdioxid	Inhalation	Atmungssystem Silikose	Nicht eingestuft	Mensch	NOAEL Nicht verfügbar.	arbeitsbedingt e Exposition
Triethylentetramin, propoxyliert	Verschluc ken	Niere und/oder Blase	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	Ratte	NOAEL 300 mg/kg/Tag	43 Tage
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	Dermal	Haut Herz Hormonsystem Magen-Darm- Trakt Blutbildendes System Leber Immunsystem Muskeln Nervensystem Niere und/oder Blase Atmungssystem Vascular-System	Nicht eingestuft	Kaninche n	NOAEL 8 mg/kg/Tag	90 Tage

N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	Inhalation	Haut Hormonsystem Augen Atmungssystem Herz Blutbildendes System Leber Immunsystem	Nicht eingestuft	Ratte	NOAEL 0,038 mg/l	14 Wochen
		Nervensystem Niere und/oder Blase				
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	Verschluc ken	Magen-Darm-Trakt Leber Niere und/oder Blase Atmungssystem	Nicht eingestuft	Ratte	NOAEL 150 mg/kg/Tag	7 Tage
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	Verschluc ken	Herz Hormonsystem Blutbildendes System Nervensystem	Nicht eingestuft	Ratte	NOAEL 220 mg/kg/Tag	7 Tage
Titandioxid	Inhalation	Atmungssystem	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	Ratte	LOAEL 0,01 mg/l	2 Jahre
Titandioxid	Inhalation	Lungenfibrose	Nicht eingestuft	Mensch	NOAEL Nicht verfügbar.	arbeitsbedingt e Exposition

Aspirationsgefahr

Für den Bestandteil / die Bestandteile sind zurzeit entweder keine Daten verfügbar oder die vorliegenden Daten reichen nicht für eine Einstufung aus.

Für zusätzliche toxikologische Information wenden Sie sich an die auf Seite 1 angegebene Adresse oder Telefonnummer.

11.2 Angaben über sonstige Gefahren

Dieses Material enthält keine Stoffe, die als endokrine Disruptoren für die menschliche Gesundheit eingestuft sind.

ABSCHNITT 12: Umweltbezogene Angaben

Die folgenden Informationen können von der Einstufung des Produktes in Abschnitt 2 und / oder von der Einstufung einzelner Inhaltsstoffe in Abschnitt 3 abweichen, die von der zuständigen europäischen Behörde festgelegt worden sind. Die Angaben in Abschnitt 12 basieren auf den UN-GHS Berechnungsregeln und Einstufungen, die aus 3M-Bewertungen abgeleitet wurden.

12.1. Toxizität

Für das Produkt sind keine Testdaten verfügbar.

Stoff	CAS-Nr.	Organismus	Art	Exposition	Endpunkt	Ergebnis
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	72244-98-5	Belebtschlamm	experimentell	3 Std.	EC50	>1.000 mg/l
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-	72244-98-5	Grünalge	experimentell	72 Std.	EC50	>733 mg/l

mercaptopropylether						
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	72244-98-5	Wasserfloh (Daphnia magna)	experimentell	48 Std.	EC50	12 mg/l
Poly[oxy(methyl-1,2- ethandiyl)], alpha- hydro-omega-hydroxy-, ether mit 2,2- Bis(hydroxymethyl)- 1,3-propandiol (4:1), 2- hydroxy-3- mercaptopropylether	72244-98-5	Zebrabärbling	experimentell	96 Std.	LC50	87 mg/l
Poly[oxy(methyl-1,2-ethandiyl)], alpha-hydro-omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)-1,3-propandiol (4:1), 2-hydroxy-3-mercaptopropylether	72244-98-5	Grünalge	experimentell	72 Std.	NOEC	338 mg/l
Poly[oxy(methyl-1,2-ethandiyl)], alpha- hydro-omega-hydroxy-, ether mit 2,2- Bis(hydroxymethyl)- 1,3-propandiol (4:1), 2- hydroxy-3- mercaptopropylether	72244-98-5	Wasserfloh (Daphnia magna)	experimentell	21 Tage	NOEC	3,5 mg/l
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	67762-90-7	Nicht anwendbar.	Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Triethylentetramin, propoxyliert	26950-63-0	Grünalge	experimentell	72 Std.	EC50	4,1 mg/l
Triethylentetramin, propoxyliert	26950-63-0	Regenbogenforelle	experimentell	96 Std.	LC50	>4,1 mg/l
Triethylentetramin, propoxyliert	26950-63-0	Wasserfloh (Daphnia magna)	experimentell	48 Std.	EC50	48 mg/l
Triethylentetramin, propoxyliert	26950-63-0	Grünalge	experimentell	72 Std.	ErC10	0,11 mg/l
Triethylentetramin, propoxyliert	26950-63-0	Belebtschlamm	experimentell	3 Std.	EC10	38 mg/l
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	3033-62-3	Belebtschlamm	experimentell	30 Minuten	EC20	>720 mg/l
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	3033-62-3	Grünalge	experimentell	72 Std.	ErC50	24 mg/l
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	3033-62-3	Wasserfloh (Daphnia magna)	experimentell	48 Std.	EC50	102 mg/l
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	3033-62-3	Zebrabärbling	experimentell	96 Std.	LC50	131,2 mg/l
	3033-62-3	Grünalge	experimentell	72 Std.	ErC10	5 mg/l
Titandioxid	13463-67-7	Belebtschlamm	experimentell	3 Std.	NOEC	>=1.000 mg/l
Titandioxid	13463-67-7	Kieselalge	experimentell	72 Std.	EC50	>10.000 mg/l
Titandioxid	13463-67-7	Elritze (Pimephales promelas)	experimentell	96 Std.	LC50	>100 mg/l
Titandioxid	13463-67-7	Wasserfloh (Daphnia magna)	experimentell	48 Std.	EC50	>100 mg/l

.....

Titandioxid	13463-67-7	Kieselalge	experimentell	72 Std.	NOEC	5.600 mg/l
Trizinkbis(orthophosph at)	7779-90-0	Belebtschlamm	Abschätzung	3 Std.	EC50	10 mg/l
Trizinkbis(orthophosph at)	7779-90-0	Grünalge	Abschätzung	72 Std.	EC50	0,083 mg/l
Trizinkbis(orthophosph at)		Wirbellose (Invertebrata)	Abschätzung	48 Std.	EC50	0,08 mg/l
Trizinkbis(orthophosph at)	7779-90-0	Regenbogenforelle	Abschätzung	96 Std.	LC50	0,33 mg/l
Trizinkbis(orthophosph at)	7779-90-0	Wasserfloh (Daphnia magna)	Abschätzung	48 Std.	EC50	0,12 mg/l
Trizinkbis(orthophosph at)	7779-90-0	Kieselalge	Abschätzung	72 Std.	EC50	0,04 mg/l
Trizinkbis(orthophosph at)	7779-90-0	Grünalge	Abschätzung	72 Std.	NOEC	0,01 mg/l
Trizinkbis(orthophosph at)	7779-90-0	Wasserfloh (Daphnia magna)	Abschätzung	7 Tage	NOEC	0,026 mg/l
3,6- Diazaoctanethylendiam in	112-24-3	Grünalge	experimentell	72 Std.	EC50	27,4 mg/l
3,6- Diazaoctanethylendiam in	112-24-3	Guppy (Poecilia reticulata)	experimentell	96 Std.	LC50	570 mg/l
3,6- Diazaoctanethylendiam in	112-24-3	Wasserfloh (Daphnia magna)	experimentell	48 Std.	EC50	37,4 mg/l
3,6- Diazaoctanethylendiam in	112-24-3	Grünalge	experimentell	72 Std.	NOEC	0,468 mg/l
3,6- Diazaoctanethylendiam in	112-24-3	Wasserfloh (Daphnia magna)	experimentell	21 Tage	NOEC	2,86 mg/l

12.2. Persistenz und Abbaubarkeit

Stoff	CAS-Nr.	Testmethode	Dauer	Messgröße	Ergebnis	Protokoll
Poly[oxy(methyl-1,2- ethandiyl)], alpha-hydro- omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)- 1,3-propandiol (4:1), 2- hydroxy-3- mercaptopropylether	72244-98-5	experimentell biologische Abbaubarkeit	28 Tage	CO2- Entwicklungstest	5 %CO2 Entwicklung/T hCO2 Entwicklung	OECD 301B Modifizierter Sturm-Test oder CO2- Entwicklungstest
Siloxane und Silicone, di- Me, Reaktionsprodukt mit Siliciumdioxid	67762-90-7	Daten nicht verfügbar - nicht ausreichend.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Triethylentetramin, propoxyliert	26950-63-0	experimentell biologische Abbaubarkeit	28 Tage	biochemischer Sauerstoffbedarf	4 %BOD/ThO D	OECD 301F Manometrischer Respirometer Test
Triethylentetramin, propoxyliert	26950-63-0	experimentell Hydrolyse		Hydrolytische Halbwertszeit (pH 7)	>1 Jahre (t 1/2)	OECD 111 Hydrolyse als Funktion des pH-Wertes
N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamin)	3033-62-3	experimentell biologische Abbaubarkeit	28 Tage	biochemischer Sauerstoffbedarf	0 %BOD/ThO D	OECD 301C - MITI (I)
Titandioxid	13463-67-7	Daten nicht verfügbar - nicht ausreichend.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Trizinkbis(orthophosphat)	7779-90-0	Daten nicht verfügbar - nicht ausreichend.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
3,6- Diazaoctanethylendiamin	112-24-3	experimentell biologische Abbaubarkeit	20 Tage	biochemischer Sauerstoffbedarf	0 %BOD/ThO D	OECD 301D - Closed Bottle- Test

12.3. Bioakkumulationspotenzial

Stoff	CAS-Nr.	Testmethode	Dauer	Messgröße	Ergebnis	Protokoll
Poly[oxy(methyl-1,2- ethandiyl)], alpha-hydro- omega-hydroxy-, ether mit 2,2-Bis(hydroxymethyl)- 1,3-propandiol (4:1), 2- hydroxy-3- mercaptopropylether	72244-98-5	Abschätzung Biokonzentration		Octanol/Wasser- Verteilungskoeffizi ent	>1.2	
Siloxane und Silicone, di- Me, Reaktionsprodukt mit Siliciumdioxid	67762-90-7	Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Triethylentetramin, propoxyliert	26950-63-0	unbekannt Biokonzentration		Octanol/Wasser- Verteilungskoeffizi ent	-2.42	
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	3033-62-3	experimentell Biokonzentration		Octanol/Wasser- Verteilungskoeffizi ent	-0.339	OECD 107 Verteilungskoeffizient n- Octanol/Wasser (Shake Flask Methode)
Titandioxid	13463-67-7	experimentell Biokonzentrationsfa ktor (BCF) - Fisch	42 Tage	Bioakkumulationsf aktor	9.6	
3,6- Diazaoctanethylendiamin	112-24-3	experimentell Biokonzentrationsfa ktor (BCF) - Fisch	42 Tage	Bioakkumulationsf aktor	<5.0	OECD 305 Bioconcentration: Flow-through Fish Test

12.4. Mobilität im Boden

Stoff	CAS-Nr.	Testmethode	Messgröße	Ergebnis	Protokoll
N,N,N',N'-Tetramethyl- 2,2'-oxybis(ethylamin)	3033-62-3	modelliert Mobilität im Boden	Koc	13 l/kg	Episuite TM

12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Dieses Material enthält keine Stoffe, die als persistent, bioakkumulierbar und toxisch (PBT) oder sehr persistent und sehr bioakkumulierbar (vPvB) bewertet werden.

12.6. Endokrinschädliche Eigenschaften

Dieses Material enthält keine Stoffe, die als endokrine Disruptoren für die Umwelt eingestuft sind.

12.7. Andere schädliche Wirkungen

Keine Information verfügbar.

ABSCHNITT 13: Hinweise zur Entsorgung

13.1. Verfahren der Abfallbehandlung

Inhalt/Behälter einer Entsorgung gemäß lokalen/regionalen/nationalen Vorschriften zuführen.

Entsorgung (Verwertung oder Beseitigung) in Übereinstimmung mit den lokalen und nationalen gesetzlichen Bestimmungen. Entsorgung durch Verbrennung in Übereinstimmung mit den örtlichen und nationalen gesetzlichen Bestimmungen. Eine ordnungsgemäße Entsorgung kann den Einsatz von zusätzlichem Brennstoff erforderlich machen. Leere Tonnen / Fässer / Behälter, die für den Transport und die Handhabung gefährlicher Chemikalien verwendet wurden (chemische Stoffe / Mischungen / Zubereitungen, die gemäß den geltenden Vorschriften als gefährlich eingestuft sind), sind als gefährliche Abfälle zu betrachten, zu lagern, zu behandeln und zu entsorgen, sofern nichts anderes durch die anwendbaren Abfallvorschriften festgelegt ist. Konsultieren Sie die zuständigen Behörden, um verfügbare Behandlungs- und

Entsorgungseinrichtungen zu ermitteln.

Die Zuordnung der Abfallnummern ist entsprechend der europäischen Verordnung (2000/532/EG) branchen- und prozessspezifisch vom Abfallerzeuger durchzuführen.

Die angegebenen Abfallcodes sind daher lediglich Empfehlungen von 3M für die Entsorgung des unverarbeiteten Produktes. (Abfälle mit einem Sternchen (*) versehen, sind gefährliche Abfälle)

Empfohlene Abfallcodes / Abfallnamen:

080409* Klebstoff- und Dichtmassenabfälle, die organische Lösemittel oder andere gefährliche Stoffe

200127* Farben, Druckfarben, Klebstoffe und Kunstharze, die gefährliche Stoffe enthalten.

ABSCHNITT 14: Angaben zum Transport

	Straßenverkehr (ADR)	Luftverkehr (ICAO TI /IATA)	Seeverkehr (IMDG)
14.1. UN-Nummer oder ID-Nummer	UN3077	UN3077	UN3077
14.2. Ordnungsgemäße UN-Versandbezeichnung		ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(ZINC PHOSPHATE)	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(ZINC PHOSPHATE)
14.3. Transportgefahrenklassen	9	9	9
14.4. Verpackungsgruppe	III	III	III
14.5. Umweltgefahren	Umweltgefährdend	Nicht anwendbar.	MEERESSCHADSTOFF / MARINE POLLUTANT
14.6. Besondere Vorsichtsmaßnahmen für den Verwender	Abschnitten in diesem	Weitere Informationen zu Vorsichtsmaßnahmen entnehmen Sie bitte den anderen Abschnitten in diesem Sicherheitsdatenblatt.	Weitere Informationen zu Vorsichtsmaßnahmen entnehmen Sie bitte den anderen Abschnitten in diesem Sicherheitsdatenblatt.
14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten	Keine Daten verfügbar.	Keine Daten verfügbar.	Keine Daten verfügbar.
Kontrolltemperatur	Keine Daten verfügbar.	Keine Daten verfügbar.	Keine Daten verfügbar.
Notfalltemperatur	Keine Daten verfügbar.	Keine Daten verfügbar.	Keine Daten verfügbar.
ADR Klassifizierungscode	M7	Nicht anwendbar.	Nicht anwendbar.

3MTM OEM Match Epoxy Seam Sealer, PNs 08528, 08526, 08524, 08522 (Part A)

IMDG Trenngruppe	Nicht anwendbar.	Nicht anwendbar.	KEINE	

Für weitere Informationen zum Transport / Versand des Materials im Eisenbahnverkehr (RID) und Binnenschiffsverkehr (ADN) wenden Sie sich an die auf Seite 1 angegebene Adresse oder Telefonnummer.

ABSCHNITT 15: Rechtsvorschriften

15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

Karzinogenität

Chemischer NameCAS-Nr.EinstufungVerordnungTitandioxid13463-67-7Gruppe 2B:International AgencyMöglicherweise
krebserregend für den
Menschen (IARC Group
2B: possibly
carcinogenic to humans)(IARC)

Status Chemikalienregister weltweit

Für weitere Informationen setzen Sie sich bitte mit 3M in Verbindung. Die Komponenten dieses Produkts entsprechen den Anforderungen der TSCA an Chemikalien. Alle erforderlichen Komponenten dieses Produkts sind im aktiven Teil des TSCA Inventory aufgelistet.

RICHTLINIE 2012/18/EU ("Seveso-III-Richtlinie")

Seveso Gefahrenkategorien, Anhang I, Teil 1

Gefahrenkategorien	Mengenschwelle (in Tonnen) für die Anwendung in		
	Betrieben der unteren Klasse Betrieben der oberen Klasse		
E2 Gewässergefährdend	200	500	

In der Seveso Richtlinie Anhang I, Teil 2, namentlich aufgeführte gefährliche Stoffe Keine

Verordnung (EU) Nr. 649/2012 ("PIC-Verordnung")

Keine Chemikalien aufgelistet

15.2. Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung wurde für diesen Stoff / dieses Gemisch gemäß der geänderten Verordnung (EG) Nr. 1907/2006 nicht durchgeführt.

ABSCHNITT 16: Sonstige Angaben

Liste der relevanten Gefahrenhinweise

EUH071 Wirkt ätzend auf die Atemwege. H302 Gesundheitsschädlich bei Verschlucken. H311 Giftig bei Hautkontakt.

H312 Gesundheitsschädlich bei Hautkontakt.

3MTM OEM Match Epoxy Seam Sealer, PNs 08528, 08526, 08524, 08522 (Part A)

H314	Verursacht schwere Verätzungen der Haut und schwere Augenschäden.
H315	Verursacht Hautreizungen.
H317	Kann allergische Hautreaktionen verursachen.
H318	Verursacht schwere Augenschäden.
H319	Verursacht schwere Augenreizung.
H332	Gesundheitsschädlich bei Einatmen.
H351i	Kann vermutlich Krebs erzeugen (Einatmen).
H400	Sehr giftig für Wasserorganismen.
H410	Sehr giftig für Wasserorganismen mit langfristiger Wirkung.
H411	Giftig für Wasserorganismen, mit langfristiger Wirkung.
H412	Schädlich für Wasserorganismen, mit langfristiger Wirkung.

Änderungsgründe:

Abschnitt 1.3: e-mail Adresse - Informationen wurden modifiziert.

Abschnitt 8.1: Expositionsgrenzwerte Tabelle - Informationen wurden modifiziert.

Abschnitt 8.2.2. Individuelle Schutzmaßnahmen – Handschutz und sonstige Schutzmaßnahmen: Schürze - Informationen wurden hinzugefügt.

Abschnitt 8.2.2: Individuelle Schutzmaßnahmen - Körper- und Hautschutz Information - Informationen wurden gelöscht.

Abschnitt 8.2.2: Hautschutz - Schutzkleidung Information - Informationen wurden gelöscht.

Abschnitt 14: ADR Klassifizierungscode - Angaben - Informationen wurden modifiziert.

Abschnitt 14.3: Transportgefahrenklassen - Angaben - Informationen wurden modifiziert.

Abschnitt 14.5: Umweltgefahren - Informationen wurden modifiziert.

Abschnitt 14: Angaben zum Transport - Informationen wurden modifiziert.

Abschnitt 14.4: Verpackungsgruppe - Angaben - Informationen wurden modifiziert.

Abschnitt 14.2: Ordnungsgemäße UN-Versandbezeichnung - Informationen wurden modifiziert.

Abschnitt 14: IMDG Trenngruppe - Angaben - Informationen wurden modifiziert.

Abschnitt 14.1: UN-Nummer oder ID-Nummer - Angaben - Informationen wurden modifiziert.

Die vorstehenden Angaben stellen unsere gegenwärtigen Erfahrungswerte dar und beschreiben das Produkt nur im Hinblick auf Sicherheitserfordernisse. Es obliegt dem Besteller, vor Verwendung des Produktes selbst zu prüfen, ob es sich auch im Hinblick auf mögliche anwendungswirksame Einflüsse für den von ihm vorgesehenen Verwendungszweck eignet. Alle Fragen einer Gewährleistung und Haftung für dieses Produkt regeln sich nach unseren allgemeinen Verkaufsbedingungen, sofern nicht gesetzliche Vorschriften etwas anderes vorsehen. Dieses Sicherheitsdatenblatt wird zur Übermittlung von Gesundheits- und Sicherheitsinformationen bereitgestellt. Wenn Sie rechtlich der Importeur für dieses Produkt in die Europäische Union sind, sind Sie für die Erfüllung aller rechtlichen Anforderungen hinsichtlich des Produktes verantwortlich, einschließlich erforderlicher Produktregistrierungen/-meldungen, Stoffmengenerfassung und Stoffregistrierung.

Die Sicherheitsdatenblätter der 3M Österreich sind abrufbar unter www.3m.com/at

Sicherheitsdatenblatt

Copyright,2025, 3M Company Alle Rechte vorbehalten. Das Kopieren und / oder Herunterladen dieser Informationen zum Zweck der ordnungsgemäßen Verwendung von 3M-Produkten ist gestattet, sofern: (1) die Informationen ohne vorherige schriftliche Zustimmung von 3M vollständig und ohne Änderungen kopiert werden, und (2) weder die Kopie noch das Original wird weiterverkauft oder anderweitig vertrieben, um daraus einen Gewinn zu erzielen.

 Dokument:
 44-4909-6
 Version:
 1.01

 Überarbeitet am:
 16/10/2025
 Ersetzt Ausgabe vom:
 29/10/2024

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006 (REACH) und ihren Änderungen

ABSCHNITT 1: Bezeichnung des Stoffs bzw. des Gemischs und des Unternehmens

1.1. Produktidentifikator

3MTM OEM Match Epoxy Seam Sealer, PN 08522, Beige (Part B)

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Identifizierte Verwendungen

Automotive/Fahrzeugbau

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Anschrift: 3M Österreich GmbH

Am Europlatz 2 A-1120 Wien

Tel. / Fax.: +49-2131-14-2914; Fax.: +49-2131-14-3587

E-Mail: CER-productstewardship@mmm.com

Internet: www.3m.com/at

1.4. Notrufnummer

Notruf (Tag und Nacht): Tel.Nr. +43 1 406 43 43 Vergiftungsinformationszentrale der Gesundheit Österreich GmbH

ABSCHNITT 2: Mögliche Gefahren

2.1. Einstufung des Stoffs oder Gemischs

CLP VERORDNUNG (EG) Nr. 1272/2008

Zur Einstufung der Gesundheitsgefahren und Umweltgefahren dieses Materials wurde die Berechnungsmethode auf Basis der Bestandteile angewandt; außer in Fällen, in denen Testdaten verfügbar sind oder die physikalische Form die Einstufung beeinflusst. Die Einstufung(en), die auf Testdaten oder physikalischer Form basieren, sind nachstehend gegebenenfalls angegeben.

Einstufung

Ätz-/Reizwirkung auf die Haut, Kategorie 2 - Skin Irrit. 2; H315 Schwere Augenschädigung/Augenreizung, Kategorie 2 - Eye Irrit. 2; H319 Sensibilisierung der Haut, Kategorie 1 - Skin Sens. 1; H317 Chronisch gewässergefährdend, Kategorie 2 - Aquatic Chronic 2; H411

Den vollständigen Text der hier verwendeten H-Sätze finden Sie in Abschnitt 16 dieses Sicherheitsdatenblattes.

2.2. Kennzeichnungselemente

CLP VERORDNUNG (EG) Nr. 1272/2008

Signalwort

ACHTUNG.

Kennbuchstabe und Gefahrenbezeichnung:

GHS07 (Ausrufezeichen)GHS09 (Umwelt)

Gefahrenpiktogramm(e)

Produktidentifikator (enthält):

Chemischer Name	CAS-Nr.	EG-Nummer	Gew%
4,4'-Methylen-diphenyldiglycidylether	1675-54-3	216-823-5	60 - 100
Epichlorhydrin-4,4'-(1-	30583-72-3	500-070-7	10 - 30
methylethyliden)biscyclohexanol Polymer			

Gefahrenhinweise (H-Sätze):

H315 Verursacht Hautreizungen.

H319 Verursacht schwere Augenreizung.

H317 Kann allergische Hautreaktionen verursachen.

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

Sicherheitshinweise (P-Sätze)

Prävention:

P273 Freisetzung in die Umwelt vermeiden.

P280E Schutzhandschuhe tragen.

Reaktion:

P305 + P351 + P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser spülen.

Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen.

P333 + P313 Bei Hautreizung oder -ausschlag: Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.

P391 Verschüttete Mengen aufnehmen.

Enthält 6% Bestandteile mit unbekannter Gewässergefährdung.

2.3. Sonstige Gefahren

Keine bekannt.

Dieses Material enthält keine Stoffe, die als persistent, bioakkumulierbar und toxisch (PBT) oder sehr persistent und sehr bioakkumulierbar (vPvB) bewertet werden.

ABSCHNITT 3: Zusammensetzung / Angaben zu Bestandteilen

3.1. Stoffe

Nicht anwendbar.

3.2. Gemische

Chemischer Name	Identifikator(en)	%	Einstufung gemäß Verordnung (EG) Nr. 1272/2008 [CLP]
4,4'-Methylen-diphenyldiglycidylether	CAS-Nr. 1675-54-3 EG-Nr. 216-823-5	60 - 100	Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411
Epichlorhydrin-4,4'-(1- methylethyliden)biscyclohexanol Polymer	CAS-Nr. 30583-72-3 EG-Nr. 500-070-7	10 - 30	Skin Sens. 1, H317 Aquatic Chronic 3, H412
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	CAS-Nr. 67762-90-7	3 - 7	Bestandteil ohne Einstufung nach Verordnung (EG) Nr. 1272/2008
Calciumphosphat (CA3(PO4)2)	CAS-Nr. 7758-87-4 EG-Nr. 231-840-8	1 - 5	Bestandteil ohne Einstufung nach Verordnung (EG) Nr. 1272/2008
Siliciumdioxid, (amorphe Kieselsäuren)	CAS-Nr. 7631-86-9 EG-Nr. 231-545-4	1 - 5	Stoff mit einem nationalen Grenzwert für die berufsbedingte Exposition
Titandioxid	CAS-Nr. 13463-67-7 EG-Nr. 236-675-5	<= 0,5	Carc. 2, H351 (Einatmen)

Den vollständigen Text der hier verwendeten H-Sätze finden Sie in Abschnitt 16 dieses Sicherheitsdatenblattes.

Spezifische Konzentrationsgrenzwerte

Chemischer Name	Identifikator(en)	Spezifische Konzentrationsgrenzwerte
,,,,,		(C >= 5%) Skin Irrit. 2, H315 (C >= 5%) Eye Irrit. 2, H319

Informationen bezüglich der Expositionsgrenzwerte, der persistenten, bioakkumulierbaren und toxischen (PBT) bzw. der sehr persistenten und sehr bioakkumulierbaren (vPvB) Eigenschaften der Inhaltsstoffe finden Sie in den Abschnitten 8 und 12 dieses Sicherheitsdatenblattes

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Einatmen:

Die betroffene Person an die frische Luft bringen. Bei Unwohlsein ärztliche Hilfe hinzuziehen.

Hautkontakt:

Sofort mit Wasser und Seife waschen. Kontaminierte Kleidung ausziehen und vor erneutem Tragen waschen. Wenn Anzeichen / Symptome zunehmen, ärztliche Hilfe hinzuziehen.

Augenkontakt:

Sofort mit viel Wasser ausspülen. Vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen. Bei anhaltenden Anzeichen / Symptomen ärztliche Hilfe hinzuziehen.

Verschlucken:

Mund ausspülen. Bei Unwohlsein ärztliche Hilfe hinzuziehen.

4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Die wichtigsten Symptome und Wirkungen, die auf der CLP-Einstufung basieren, sind: Hautreizung (lokale Rötung, Schwellung, Juckreiz und Trockenheit). Allergische Hautreaktionen (Rötung, Schwellung, Blasenbildung und Juckreiz). Schwere Augenreizung (erhebliche Rötung, Schwellung, Schmerzen, Tränen und Sehstörungen).

4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Nicht anwendbar.

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1. Löschmittel

Bei Brand: Löschmittel für gewöhnlich brennbare Materialien wie z.B. Wasser oder Schaum zum Löschen verwenden.

5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Kein inhärenter Bestandteil / inhärentes Merkmal in diesem Produkt.

Gefährliche Zersetzungs- und Nebenprodukte

StoffBedingungAldehydeWährend der VerbrennungKohlenmonoxidWährend der VerbrennungKohlendioxidWährend der VerbrennungHydrogenchloridWährend der Verbrennung

5.3. Hinweise für die Brandbekämpfung

Vollschutzanzug tragen, einschließlich Helm, umluftunabhängigen Atemschutz (Überdruck), dichtschließende Jacke und Hose, Arm-, Taillen-und Beinschutz, Gesichtsmaske und Schutz für expositionsgefährdete Kopfteile.

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Umgebung räumen. Raum belüften. Bei größeren Leckagen bzw. bei Freisetzung in geschlossenen Räumen ist eine Absaugvorrichtung zu verwenden, um die Dämpfe nach dem Stand der Technik abzusaugen bzw. zu verdünnen. Verwenden Sie persönliche Schutzausrüstung gemäß den Ergebnissen einer Expositionsbeurteilung. Siehe Abschnitt 8.2.2. für persönliche Schutzausrüstungsempfehlungen. Wenn die erwartete Exposition infolge einer unbeabsichtigten Freisetzung die Schutzfähigkeiten der in Abschnitt 8.2.2. aufgeführten persönliche Schutzausrüstung übersteigt oder unbekannt ist, persönliche Schutzausrüstung auswählen, die ein angemessenes Schutzniveau bietet. Berücksichtigen Sie dabei die physikalischen und chemischen Gefahren des Materials. Beispiele für Kombination der persönlichen Schutzausrüstung für den Notfalleinsatz könnten sein: das Tragen von Feuerwehrschutzkleidung bei der Freisetzung von entzündbarem Material; das Tragen von Chemikalienschutzkleidung, wenn das verschüttete Material ätzend, sensibilisierend oder stark hautreizend ist oder über die Haut absorbiert werden kann; oder das Tragen eines Pressluftatmers bei Chemikalien, wenn die Gefahr besteht, dass diese eingeatmet werden. Siehe Abschnitte 2 und 11 für Informationen zu physikalischen und gesundheitlichen Gefahren.

6.2. Umweltschutzmaßnahmen

Freisetzung in die Umwelt vermeiden.

6.3. Methoden und Material für Rückhaltung und Reinigung

Bitte beachten, Sie dass die Zugabe eines absorbierenden Materials weder die physikalischen Gefährdungen, noch Gesundheits- oder Umweltrisiken beeinflusst. Verschüttetes/ausgetretenes Material sammeln. In einen UN-geprüften Behälter geben und verschließen. Rückstände aufwischen. Behälter verschließen. Entsorgung des gesammelten

Materials so schnell wie möglich gemäß den lokalen / nationalen Vorschriften.

6.4. Verweis auf andere Abschnitte

Zusätzliche Informationen entnehmen Sie bitte Abschnitt 8 und 13.

ABSCHNITT 7: Handhabung und Lagerung

7.1. Schutzmaßnahmen zur sicheren Handhabung

Darf nicht in die Hände von Kindern gelangen. Vor Gebrauch alle Sicherheitshinweise lesen und verstehen. Einatmen von Staub/Rauch/Gas/Nebel/Dampf/Aerosol vermeiden. Nicht in die Augen, auf die Haut oder auf die Kleidung gelangen lassen. Bei Gebrauch nicht essen, trinken oder rauchen.

Nach Gebrauch gründlich waschen.

Kontaminierte Arbeitskleidung soll am Arbeitsplatz verbleiben. Freisetzung in die Umwelt vermeiden. Kontaminierte Kleidung vor erneutem Tragen waschen. Kontakt mit Oxydationsmitteln (z.B. Chlor, Chromsäure etc.) vermeiden. Vorgeschriebene persönliche Schutzausrüstung verwenden.

7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

Nicht in der Nähe von Wärmequellen lagern. Von Säuren getrennt lagern. Fern von Oxydationsmitteln lagern. Von Aminen getrennt lagern.

7.3. Spezifische Endanwendungen

Siehe Abschnitt 7.1. Maßnahmen zur sicheren Handhabung und 7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung der Unverträglichkeiten. Siehe Abschnitt 8 Begrenzung und Überwachung der Exposition / persönliche Schutzausrüstung.

Abschnitt 8: Begrenzung und Überwachung der Exposition / Persönliche Schutzausrüstungen

8.1. Zu überwachende Parameter

Expositionsgrenzwerte

Wenn ein Bestandteil, der in Abschnitt 3 gelistet ist, nicht in der folgenden Tabelle erscheint, ist für diesen Bestandteil kein Grenzwert verfügbar.

Chemischer Name	CAS-Nr.	Quelle	Grenzwert	Zusätzliche Hinweise
Titandioxid	13463-67-7	Österr.	(Alveolarstaub) TMW: 5	Anhang IIIB: Stoffe mit
		Grenzwerte-VO	mg/m3 A; 10 mg/m3 A; 60	begründetem Verdacht
			Miw, 2x	auf krebserzeugendes
				Potential

Siliciumdioxid, (amorphe 7631-86-9 Österr. TMW: 4 mg/m3 E

Kieselsäuren) Grenzwerte-VO

Österr. Grenzwerte-VO: TMW (Tagesmittelwert), KZW (Kurzzeitwert), A (alveolengängiger Anteil), E (einatembare Fraktion), Miw (als Mittelwert über dem Beurteilungszeitraum), Mow (als Momentanwert), Häufigkeit/Schicht.

Österr. TRK-Werte : technische Richtkonzentrationen für jene gesundheitsgefährdenden Arbeitsstoffe, für die keine als unbedenklich anzusehende

Konzentration angegeben werden kann

MAK = maximale Arbeitsplatzkonzentration

AGW = Arbeitsplatzgrenzwert

KZW: Kurzzeitgrenzwert

CEIL: Höchstwert, der zu keinem Zeitpunkt bei der Arbeit überschritten werden darf.

Empfohlene Überwachungsverfahren: Geeignete Analysenverfahren sind z.B. in der Zusammenstellung "Empfohlene Analysenverfahren für Arbeitsplatzmessungen" der deutschen Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) oder in der Arbeitsmappe "Messung von Gefahrstoffen" des Instituts für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) enthalten. Darüber hinaus enthält die Online-Datenbank "GESTIS—Analysenverfahren für chemische Substanzen" des Instituts für Arbeitsschutz (IFA) für zahlreiche Stoffe anerkannte Meßverfahren. Insbesondere für organische Verbindungen werden auch häufig die Methoden des National Institute for Occupational Safety and Health (NIOSH, USA) herangezogen.

8.2. Begrenzung und Überwachung der Exposition

8.2.1. Geeignete technische Steuerungseinrichtungen

Hohe Luftwechselrate und/oder lokale Absaugung erforderlich um sicher zustellen, dass die vorgeschriebenen Grenzwerte für die Exposition von Luftschadstoffen und/oder Staub, Rauch, Gas, Nebel, Dämpfen oder Sprühnebel eingehalten werden. Wenn die Belüftung nicht ausreicht, Atemschutzgerät verwenden.

8.2.2. Individuelle Schutzmaßnahmen, zum Beispiel persönliche Schutzausrüstung

Augen-/Gesichtsschutz

Die Auswahl des Augen- / Gesichtsschutzes sollte auf der Grundlage einer Arbeitsbereichsanalyse erfolgen. Der folgende Augen- / Gesichtsschutz wird empfohlen:

Schutzbrille mit Seitenschutz tragen.

Korbbrille.

Anwendbare Normen / Standards
Augenschutz nach EN 166 verwenden.

Hautschutz

Handschutz und sonstige Schutzmaßnahmen

Auswahl und Gebrauch von Schutzhandschuhen und Schutzkleidung sollte auf der Grundlage einer Arbeitsbereichsanalyse erfolgen. Die Auswahl sollte auf der Basis von Faktoren wie Expositionswerten, Konzentration des Stoffes bzw. Gemisches, Häufigkeit und Dauer der Exposition, physikalischen Bedingungen wie z.B. der Temperatur und anderen Verwendungsbedingungen erfolgen. Zur Auswahl geeigneter Werkstoffe bitte Hersteller von Körperschutzmitteln konsultieren. Hinweis: Zur Verbesserung der Fingerfertigkeit kann ein Nitril-Handschuh über einem Polymerlaminat-Handschuh getragen werden.

Schutzhandschuhe aus folgendem Material werden empfohlen:

StoffMaterialstärke (mm)DurchbruchszeitPolymerlaminat (z.B.Keine Daten verfügbar.Keine Daten verfügbar.

Polyethylennylon, 5-lagiges Laminat)

Anwendbare Normen / Standards

Schutzhandschuhe verwenden, die nach EN 374 getestet sind.

Wenn dieses Produkt in einer Weise verwendet wird, die ein höheres Expositionspotenzial aufweist (z. B. Sprühen, hohes Spritzpotenzial usw.), kann die Verwendung einer Schutzschürze erforderlich sein. Siehe empfohlene Handschuhmaterialien, um geeignete Schürzenmaterialien zu bestimmen. Steht ein Handschuhmaterial nicht als Schürze zur Verfügung, eignet sich Polymerlaminat.

Atemschutz

Eine Arbeitsbereichsanalyse ist erforderlich um zu entscheiden, ob die Verwendung einer Filtermaske erforderlich ist. Ist der Einsatz einer Filtermaske erforderlich, sollte die Verwendung im Rahmen eines vollständigen Atemschutzprogrammes erfolgen. Unter Berücksichtigung der Ergebnisse der Arbeitsbereichsanalyse können die folgenden Filtermaskentypen eingesetzt werden, um die Exposition über die Atemwege zu reduzieren:

Atemschutzhalbmaske oder -vollmaske mit luftreinigendem Filter gegen Partikel.

Für Fragen über die Eignung für eine spezielle Situation wenden Sie sich an den Hersteller der Filtermaske.

Anwendbare Normen / Standards

Atemschutz nach EN 140 oder EN 136 verwenden: Filter Typ P

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Angaben zu den grundlegenden physikanschen und chem	nstnen Eigenstnatten		
Aggregatzustand	Feststoff		
Weitere Angaben zum Aggregatzustand:	Paste		
Farbe	Braun		
Geruch	leichter Epoxidgeruch		
Geruchsschwelle	Keine Daten verfügbar.		
Schmelzpunkt/Gefrierpunkt	Keine Daten verfügbar.		
Siedepunkt oder Siedebeginn und Siedebereich	Nicht anwendbar.		
Entzündbarkeit	Nicht anwendbar.		
Untere Explosionsgrenze (UEG)	Nicht anwendbar.		
Obere Explosionsgrenze (OEG)	Nicht anwendbar.		
Flammpunkt	> 115 °C [Testmethode:geschlosser Tiegel]		
Zündtemperatur	Keine Daten verfügbar.		
Zersetzungstemperatur	Keine Daten verfügbar.		
pH-Wert	Stoff/Gemisch ist nicht löslich (in Wasser)		
Kinematische Viskosität	Keine Daten verfügbar.		
Löslichkeit in Wasser	Leicht, weniger als 10%		
Löslichkeit (ohne Löslichkeit in Wasser)	Keine Daten verfügbar.		
Verteilungskoeffizient n-Oktanol/Wasser (log-Wert)	Keine Daten verfügbar.		
Dampfdruck	Nicht anwendbar.		
Dichte	1,2 kg/l		
Relative Dichte	1,22 [Referenzstandard:Wasser = 1]		
Relative Dampfdichte	Nicht anwendbar.		
Partikeleigenschaften	Nicht anwendbar.		
L	ı		

9.2. Sonstige Angaben

9.2.2. Sonstige sicherheitstechnische Kenngrößen

Flüchtige organische Bestandteile (EU)

Verdampfungsgeschwindigkeit

Molekulargewicht

Keine Daten verfügbar.

Nicht anwendbar.

Keine Daten verfügbar.

ABSCHNITT 10: Stabilität und Reaktivität

10.1. Reaktivität

Dieses Produkt kann gegenüber bestimmten Stoffen unter bestimmten Bedingungen reaktiv sein - bitte beachten Sie die weiteren Hinweise in diesem Abschnitt.

10.2. Chemische Stabilität

Stabil.

10.3. Möglichkeit gefährlicher Reaktionen

Gefährliche Polymerisation tritt nicht auf.

10.4. Zu vermeidende Bedingungen

Während des Härtungsprozesses entwickelt sich Wärme. Nicht mehr als 50 g des Produktes (Teil A und B) in einem begrenzten Volumen aushärten, da sonst eine exotherme Reaktion unter Hitze- und Rauchentwicklung eintreten kann. Funken und/oder Flammen.

10.5. Unverträgliche Materialien

Stark oxidierend wirkende Chemikalien Amine Starke Säuren.

10.6. Gefährliche Zersetzungsprodukte

<u>Stoff</u> <u>Bedingung</u>

Keine bekannt.

Siehe Abschnitt 5.2 Gefährliche Zersetzungs- und Nebenprodukte während der Verbrennung.

ABSCHNITT 11: Toxikologische Angaben

Die folgenden Informationen können von der Einstufung des Produktes in Abschnitt 2 und / oder von der Einstufung einzelner Inhaltsstoffe in Abschnitt 3 abweichen, die von der zuständigen europäischen Behörde festgelegt worden sind. Die Angaben in Abschnitt 11 basieren auf den UN-GHS Berechnungsregeln und Einstufungen, die aus interne Gefährdungsbeurteilungen abgeleitet wurden.

11.1. Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

Anzeichen und Symptome nach Exposition

Basierend auf Testdaten und / oder Informationen über die Inhaltsstoffe kann dieses Produkt die folgenden Auswirkungen auf die Gesundheit haben:

Einatmen:

Kann zusätzliche gesundheitliche Auswirkungen haben (siehe unten).

Hautkontakt:

Leichte Hautreizung: Anzeichen/Symptome können lokale Rötung, Schwellung, Juckreiz und trockene Haut sein. Allergische Hautreaktionen: Anzeichen/Symptome können Rötung, Schwellung, Blasenbildung und Juckreiz einschließen.

Augenkontakt:

Mäßige Augenreizung: Anzeichen/Symptome können Rötung, Schwellung, Schmerzen, Tränenfluss und verschwommenes Sehvermögen einschließen.

Verschlucken:

Reizungen im gastrointestinalen Bereich: Anzeichen/Symptome können Unterleibsschmerzen, Magenverstimmung, Übelkeit, Erbrechen und Durchfall einschließen.

Zusätzliche gesundheitliche Auswirkungen:

Informationen zur Karzinogenität:

Enthält eine oder mehrere Chemikalien mit einem krebserzeugenden Potenzial.

Angaben zu folgenden relevanten Gefahrenklassen

Wenn ein Bestandteil, der in Abschnitt 3 gelistet ist, nicht in den folgenden Tabellen erscheint, sind entweder keine Daten verfügbar oder die vorliegenden Daten reichen nicht für eine Einstufung aus.

Akute Toxizität

Name	Expositions weg	Art	Wert
Produkt	Verschlucke n		Keine Daten verfügbar; berechneter ATE >5.000 mg/kg

4,4'-Methylen-diphenyldiglycidylether	Dermal	Ratte	LD50 > 1.600 mg/kg
4,4'-Methylen-diphenyldiglycidylether	Verschlucke	Ratte	LD50 > 1.000 mg/kg
	n		
Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer	Dermal	Ratte	LD50 > 2.000 mg/kg
Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer	Verschlucke	Ratte	LD50 > 2.000 mg/kg
	n		
Siloxane und Silicone, di-Me, Reaktionsprodukt mit	Dermal	Kaninche	LD50 > 5.000 mg/kg
Siliciumdioxid		n	
Siloxane und Silicone, di-Me, Reaktionsprodukt mit	Inhalation	Ratte	LC50 > 0,691 mg/l
Siliciumdioxid	Staub /		
	Nebel (4		
	Std.)		
Siloxane und Silicone, di-Me, Reaktionsprodukt mit	Verschlucke	Ratte	LD50 > 5.110 mg/kg
Siliciumdioxid	n		
Siliciumdioxid, (amorphe Kieselsäuren)	Dermal	Kaninche	LD50 > 5.000 mg/kg
		n	
Siliciumdioxid, (amorphe Kieselsäuren)	Inhalation	Ratte	LC50 > 0,691 mg/l
	Staub /		
	Nebel (4		
	Std.)	_	
Siliciumdioxid, (amorphe Kieselsäuren)	Verschlucke	Ratte	LD50 > 5.110 mg/kg
	n		
Titandioxid	Dermal	Kaninche	LD50 > 10.000 mg/kg
		n	7.070 (0.0 //
Titandioxid	Inhalation	Ratte	LC50 > 6,82 mg/l
	Staub /		
	Nebel (4		
The state of the s	Std.)		X 77 50 . 10 000 . II
Titandioxid	Verschlucke	Ratte	LD50 > 10.000 mg/kg
	n		

ATE = Schätzwert Akuter Toxizität

Ätz-/Reizwirkung auf die Haut

Name	Art	Wert
4,4'-Methylen-diphenyldiglycidylether	Kaninche	Leicht reizend
	n	
Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer	Kaninche	Minimale Reizung
	n	
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Kaninche	Keine signifikante Reizung
	n	
Siliciumdioxid, (amorphe Kieselsäuren)	Kaninche	Keine signifikante Reizung
	n	
Titandioxid	Kaninche	Keine signifikante Reizung
	n	

Schwere Augenschädigung/-reizung

Name	Art	Wert
4,4'-Methylen-diphenyldiglycidylether	Kaninche	Mäßig reizend.
	n	
Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer	Kaninche	Leicht reizend
	n	
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Kaninche	Keine signifikante Reizung
	n	
Siliciumdioxid, (amorphe Kieselsäuren)	Kaninche	Keine signifikante Reizung
	n	
Titandioxid	Kaninche	Keine signifikante Reizung
	n	

Sensibilisierung der Haut

Sensionisierung uer riuut							
Name	Art	Wert					
4,4'-Methylen-diphenyldiglycidylether	Mensch	Sensibilisierend					

	und Tier.	
Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer	Maus	Sensibilisierend
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Mensch	Nicht eingestuft
	und Tier.	
Siliciumdioxid, (amorphe Kieselsäuren)	Mensch	Nicht eingestuft
	und Tier.	
Titandioxid	Mensch	Nicht eingestuft
	und Tier.	

Sensibilisierung der Atemwege

Name	Art	Wert
4,4'-Methylen-diphenyldiglycidylether	Mensch	Nicht eingestuft

Keimzellmutagenität

Name	Expositio nsweg	Wert
4,4'-Methylen-diphenyldiglycidylether	in vivo	Nicht mutagen
4,4'-Methylen-diphenyldiglycidylether	in vitro	Die vorliegenden Daten reichen nicht für eine Einstufung aus.
Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer	in vivo	Nicht mutagen
Epichlorhydrin-4,4'-(1-methylethyliden)biscyclohexanol Polymer	in vitro	Die vorliegenden Daten reichen nicht für eine Einstufung aus.
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	in vitro	Nicht mutagen
Siliciumdioxid, (amorphe Kieselsäuren)	in vitro	Nicht mutagen
Titandioxid	in vitro	Nicht mutagen
Titandioxid	in vivo	Nicht mutagen

Karzinogenität

1 z ii z			
Name	Expositio nsweg	Art	Wert
4,4'-Methylen-diphenyldiglycidylether	Dermal	Maus	Die vorliegenden Daten reichen nicht für eine Einstufung aus.
Siloxane und Silicone, di-Me, Reaktionsprodukt mit Siliciumdioxid	Keine Angabe	Maus	Die vorliegenden Daten reichen nicht für eine Einstufung aus.
Siliciumdioxid, (amorphe Kieselsäuren)	Keine Angabe	Maus	Die vorliegenden Daten reichen nicht für eine Einstufung aus.
Titandioxid	Verschluc ken	mehrere Tierarten	Nicht krebserregend
Titandioxid	Inhalation	Ratte	Karzinogen

Reproduktionstoxizität

Wirkungen auf die Reproduktion und /oder Entwicklung

Name	Expositio	Wert	Art	Ergebnis	Expositionsd
	nsweg				auer
4,4'-Methylen-diphenyldiglycidylether	Verschluc	Nicht eingestuft bzgl. weiblicher	Ratte	NOAEL 750	2 Generation
	ken	Reproduktion.		mg/kg/Tag	
4,4'-Methylen-diphenyldiglycidylether	Verschluc	Nicht eingestuft bzgl. männlicher	Ratte	NOAEL 750	2 Generation
	ken	Reproduktion.		mg/kg/Tag	
4,4'-Methylen-diphenyldiglycidylether	Dermal	Nicht eingestuft bzgl. der Entwicklung.	Kaninche	NOAEL 300	Während der
			n	mg/kg/Tag	Organentwick
					lung
4,4'-Methylen-diphenyldiglycidylether	Verschluc	Nicht eingestuft bzgl. der Entwicklung.	Ratte	NOAEL 750	2 Generation
	ken			mg/kg/Tag	
Epichlorhydrin-4,4'-(1-	Verschluc	Nicht eingestuft bzgl. der Entwicklung.	Ratte	NOAEL 300	Während der
methylethyliden)biscyclohexanol Polymer	ken			mg/kg/Tag	Trächtigkeit.
Siloxane und Silicone, di-Me,	Verschluc	Nicht eingestuft bzgl. weiblicher	Ratte	NOAEL 509	1 Generation
Reaktionsprodukt mit Siliciumdioxid	ken	Reproduktion.		mg/kg/Tag	
Siloxane und Silicone, di-Me,	Verschluc	Nicht eingestuft bzgl. männlicher	Ratte	NOAEL 497	1 Generation
Reaktionsprodukt mit Siliciumdioxid	ken	Reproduktion.		mg/kg/Tag	
Siloxane und Silicone, di-Me,	Verschluc	Nicht eingestuft bzgl. der Entwicklung.	Ratte	NOAEL	Während der
Reaktionsprodukt mit Siliciumdioxid	ken			1.350	Organentwick

				mg/kg/Tag	lung
Siliciumdioxid, (amorphe Kieselsäuren)	Verschluc	Nicht eingestuft bzgl. weiblicher	Ratte	NOAEL 509	1 Generation
	ken	Reproduktion.		mg/kg/Tag	
Siliciumdioxid, (amorphe Kieselsäuren)	Verschluc	Nicht eingestuft bzgl. männlicher	Ratte	NOAEL 497	1 Generation
	ken	Reproduktion.		mg/kg/Tag	
Siliciumdioxid, (amorphe Kieselsäuren)	Verschluc	Nicht eingestuft bzgl. der Entwicklung.	Ratte	NOAEL	Während der
	ken			1.350	Organentwick
				mg/kg/Tag	lung

Spezifische Zielorgan-Toxizität

Spezifische Zielorgan-Toxizität bei einmaliger Exposition

Für den Bestandteil / die Bestandteile sind zurzeit entweder keine Daten verfügbar oder die vorliegenden Daten reichen nicht für eine Einstufung aus.

Spezifische Zielorgan-Toxizität bei wiederholter Exposition

Name	Expositio nsweg	Spezifische Zielorgan- Toxizität	Wert	Art	Ergebnis	Expositionsd auer
4,4'-Methylen- diphenyldiglycidylether	Dermal	Leber	Nicht eingestuft	Ratte	NOAEL 1.000 mg/kg/Tag	2 Jahre
4,4'-Methylen- diphenyldiglycidylether	Dermal	Nervensystem	Nicht eingestuft	Ratte	NOAEL 1.000 mg/kg/Tag	13 Wochen
4,4'-Methylen- diphenyldiglycidylether	Verschluc ken	Gehör Herz Hormonsystem Blutbildendes System Leber Augen Niere und/oder Blase	Nicht eingestuft	Ratte	NOAEL 1.000 mg/kg/Tag	28 Tage
Epichlorhydrin-4,4'-(1- methylethyliden)biscycloh exanol Polymer	Verschluc ken	Niere und/oder Blase	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	Ratte	NOAEL 100 mg/kg/Tag	90 Tage
Epichlorhydrin-4,4'-(1- methylethyliden)biscycloh exanol Polymer	Verschluc ken	Herz Hormonsystem Magen-Darm- Trakt Knochen, Zähne, Fingernägel und / oder Haare Blutbildendes System Leber Immunsystem Nervensystem Vascular-System Haut Muskeln Augen Atmungssystem	Nicht eingestuft	Ratte	NOAEL 600 mg/kg/Tag	90 Tage
Siloxane und Silicone, di- Me, Reaktionsprodukt mit Siliciumdioxid	Inhalation	Atmungssystem Silikose	Nicht eingestuft	Mensch	NOAEL Nicht verfügbar.	arbeitsbedingt e Exposition
Siliciumdioxid, (amorphe Kieselsäuren)	Inhalation	Atmungssystem Silikose	Nicht eingestuft	Mensch	NOAEL Nicht verfügbar.	arbeitsbedingt e Exposition
Titandioxid	Inhalation	Atmungssystem	Die vorliegenden Daten reichen nicht für eine Einstufung aus.	Ratte	LOAEL 0,01 mg/l	2 Jahre
Titandioxid	Inhalation	Lungenfibrose	Nicht eingestuft	Mensch	NOAEL Nicht verfügbar.	arbeitsbedingt e Exposition

Aspirationsgefahr

Für den Bestandteil / die Bestandteile sind zurzeit entweder keine Daten verfügbar oder die vorliegenden Daten reichen nicht für eine Einstufung aus.

Für zusätzliche toxikologische Information wenden Sie sich an die auf Seite 1 angegebene Adresse oder

Telefonnummer.

11.2 Angaben über sonstige Gefahren

Dieses Material enthält keine Stoffe, die als endokrine Disruptoren für die menschliche Gesundheit eingestuft sind.

ABSCHNITT 12: Umweltbezogene Angaben

Die folgenden Informationen können von der Einstufung des Produktes in Abschnitt 2 und / oder von der Einstufung einzelner Inhaltsstoffe in Abschnitt 3 abweichen, die von der zuständigen europäischen Behörde festgelegt worden sind. Die Angaben in Abschnitt 12 basieren auf den UN-GHS Berechnungsregeln und Einstufungen, die aus 3M-Bewertungen abgeleitet wurden.

12.1. Toxizität

Für das Produkt sind keine Testdaten verfügbar.

-3 Belebtschlan -3 Regenbogen	nm Analoge Verbindungen	3 Std.	IC50	>100 mg/l
2 Paganhagan	Varhindungan			100 mg/1
2 Daganhagan	Verbindungen			
-5 Kegenbogen	forelle Abschätzung	96 Std.	LC50	2 mg/l
-3 Wasserfloh	Abschätzung	48 Std.	EC50	1,8 mg/l
-3 Grünalge	experimentell	72 Std.	ErC50	>11 mg/l
-3 Grünalge	experimentell	72 Std.	NOEC	4,2 mg/l
	1 1	21 Tage	NOEC	0,3 mg/l
2-3 Belebtschlan	nm experimentell	3 Std.	NOEC	1.000 mg/l
2-3 Grünalge	experimentell	72 Std.	EC50	>100 mg/l
2-3 Regenbogent	forelle experimentell	96 Std.	LC50	11,5 mg/l
0-7 Nicht anwen		Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
	-			
4 D 1 14 11		2.04.1	NOEC	1,000 //
-4 Belebtschlan	im Abschatzung	3 Std.	NOEC	1.000 mg/l
4 Crimalas	A baahätauna	72 9+4	EC50	>100 mg/l
-4 Grunaige	Abschatzung	/2 Stu.	EC30	-100 mg/1
4 Paganhagani	foralla Absobötzung	06 Std	I C50	>100 mg/l
-4 Kegenbogeni	Auschatzung	90 Stu.	LC30	/100 Hig/1
4 Wassarflah	Absohötzung	10 Ctd	EC50	>100 mg/l
		46 Siu.	EC30	/100 Hig/1
		72 Std	NOEC	100 mg/l
Grunaige	Auschatzung	12 Stu.	NOEC	100 mg/1
-0 Nicht answan	dhar Keine Daten	Nicht anwendbar	Nicht anwendhar	Nicht anwendbar.
-) INICIII allwell		iviciit aiiwciidbai.	Tricin anwendbar.	TVICITE all Welldbar.
7-7 Belehtschlan		3 Std	NOEC	>=1.000 mg/l
, , Beleusellian	in experimentell	J Std.	I SEC	1.000 mg/1
	(Daphnia ma -3 Grünalge -3 Grünalge -3 Wasserfloh (Daphnia ma 2-3 Belebtschlan 2-3 Grünalge 2-3 Grünalge 2-4 Regenbogen: -4 Grünalge -4 Wasserfloh (Daphnia ma -4 Grünalge -4 Wasserfloh (Daphnia ma -4 Grünalge -9 Nicht anwen	(Daphnia magna)	Grünalge experimentell 72 Std. Grünalge experimentell 72 Std. Wasserfloh (Daphnia magna) experimentell 21 Tage (Daphnia magna) experimentell 21 Tage Grünalge experimentell 3 Std. Grünalge experimentell 72 Std. Grünalge experimentell 72 Std. Grünalge experimentell 96 Std. Nicht anwendbar. Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus. Helper aus des Std. Grünalge Abschätzung 72 Std. Regenbogenforelle Abschätzung 96 Std. Wasserfloh (Daphnia magna) Wasserfloh (Daphnia magna) Wasserfloh (Daphnia magna) Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus. Nicht anwendbar. Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus.	Caphnia magna Caphnia magn

Titandioxid	13463-67-7	Kieselalge	experimentell	72 Std.	EC50	>10.000 mg/l
Titandioxid		Elritze (Pimephales promelas)	experimentell	96 Std.	LC50	>100 mg/l
Titandioxid		Wasserfloh (Daphnia magna)	experimentell	48 Std.	EC50	>100 mg/l
Titandioxid	13463-67-7	Kieselalge	experimentell	72 Std.	NOEC	5.600 mg/l

12.2. Persistenz und Abbaubarkeit

Stoff	CAS-Nr.	Testmethode	Dauer	Messgröße	Ergebnis	Protokoll
4,4'-Methylen- diphenyldiglycidylether	1675-54-3	experimentell biologische Abbaubarkeit	28 Tage	biochemischer Sauerstoffbedarf	5 %BSB/CSB	OECD 301F Manometrischer Respirometer Test
4,4'-Methylen- diphenyldiglycidylether	1675-54-3	experimentell Hydrolyse		Hydrolytische Halbwertszeit (pH 7)	117 Stunden (t 1/2)	OECD 111 Hydrolyse als Funktion des pH-Wertes
Epichlorhydrin-4,4'-(1- methylethyliden)biscyclohe xanol Polymer	30583-72-3	experimentell biologische Abbaubarkeit	28 Tage	biochemischer Sauerstoffbedarf	0.1 %BOD/Th OD	OECD 301D - Closed Bottle- Test
Siloxane und Silicone, di- Me, Reaktionsprodukt mit Siliciumdioxid	67762-90-7	Daten nicht verfügbar - nicht ausreichend.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Calciumphosphat (CA3(PO4)2)	7758-87-4	Daten nicht verfügbar - nicht ausreichend.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Siliciumdioxid, (amorphe Kieselsäuren)	7631-86-9	Daten nicht verfügbar - nicht ausreichend.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Titandioxid	13463-67-7	Daten nicht verfügbar - nicht ausreichend.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.

12.3. Bioakkumulationspotenzial

Stoff	CAS-Nr.	Testmethode	Dauer	Messgröße	Ergebnis	Protokoll
4,4'-Methylen- diphenyldiglycidylether	1675-54-3	experimentell Biokonzentration		Octanol/Wasser- Verteilungskoeffizi ent	3.242	OECD 117 log Kow HPLC Methode
Epichlorhydrin-4,4'-(1- methylethyliden)biscyclohe xanol Polymer	30583-72-3	experimentell Biokonzentration		Octanol/Wasser- Verteilungskoeffizi ent	3.84	
Siloxane und Silicone, di- Me, Reaktionsprodukt mit Siliciumdioxid	67762-90-7	Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Calciumphosphat (CA3(PO4)2)	7758-87-4	Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Siliciumdioxid, (amorphe Kieselsäuren)	7631-86-9	Keine Daten verfügbar oder vorliegende Daten reichen nicht für eine Einstufung aus.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.	Nicht anwendbar.
Titandioxid	13463-67-7	experimentell Biokonzentrationsfa ktor (BCF) - Fisch	42 Tage	Bioakkumulationsf aktor	9.6	

12.4. Mobilität im Boden

0.11.12

4,4'-Methylen-	1675-54-3	modelliert	Koc	450 l/kg	Episuite TM
diphenyldiglycidylether		Mobilität im			
		Boden			

12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Dieses Material enthält keine Stoffe, die als persistent, bioakkumulierbar und toxisch (PBT) oder sehr persistent und sehr bioakkumulierbar (vPvB) bewertet werden.

12.6. Endokrinschädliche Eigenschaften

Dieses Material enthält keine Stoffe, die als endokrine Disruptoren für die Umwelt eingestuft sind.

12.7. Andere schädliche Wirkungen

Keine Information verfügbar.

ABSCHNITT 13: Hinweise zur Entsorgung

13.1. Verfahren der Abfallbehandlung

Inhalt/Behälter einer Entsorgung gemäß lokalen/regionalen/nationalen Vorschriften zuführen.

Entsorgung (Verwertung oder Beseitigung) in Übereinstimmung mit den lokalen und nationalen gesetzlichen Bestimmungen. Entsorgung durch Verbrennung in Übereinstimmung mit den örtlichen und nationalen gesetzlichen Bestimmungen. Eine ordnungsgemäße Entsorgung kann den Einsatz von zusätzlichem Brennstoff erforderlich machen. Die Verbrennungsprodukte enthalten Halogenwasserstoffe (Chlorwasserstoff / Fluorwasserstoff / Bromwasserstoff). Die Entsorgungsanlage muss in der Lage sein, halogenierte Materialien zu behandeln. Leere Tonnen / Fässer / Behälter, die für den Transport und die Handhabung gefährlicher Chemikalien verwendet wurden (chemische Stoffe / Mischungen / Zubereitungen, die gemäß den geltenden Vorschriften als gefährlich eingestuft sind), sind als gefährliche Abfälle zu betrachten, zu lagern, zu behandeln und zu entsorgen, sofern nichts anderes durch die anwendbaren Abfallvorschriften festgelegt ist. Konsultieren Sie die zuständigen Behörden, um verfügbare Behandlungs- und Entsorgungseinrichtungen zu ermitteln.

Die Zuordnung der Abfallnummern ist entsprechend der europäischen Verordnung (2000/532/EG) branchen- und prozessspezifisch vom Abfallerzeuger durchzuführen.

Die angegebenen Abfallcodes sind daher lediglich Empfehlungen von 3M für die Entsorgung des unverarbeiteten Produktes. (Abfälle mit einem Sternchen (*) versehen, sind gefährliche Abfälle)

Empfohlene Abfallcodes / Abfallnamen:

080409* Klebstoff- und Dichtmassenabfälle, die organische Lösemittel oder andere gefährliche Stoffe

enthalten.

200127* Farben, Druckfarben, Klebstoffe und Kunstharze, die gefährliche Stoffe enthalten.

ABSCHNITT 14: Angaben zum Transport

	Straßenverkehr (ADR)	Luftverkehr (ICAO TI /IATA)	Seeverkehr (IMDG)
14.1. UN-Nummer oder ID-Nummer	UN3077	UN3077	UN3077
UN-Versandbezeichnung	ISOPROPYLIDENDIPHENOL- EPICHLORHYDRIN POLYMER)	SUBSTANCE, SOLID, N.O.S.(4,4'- ISOPROPYLIDENEDIPH	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(4,4'- ISOPROPYLIDENEDIPHENOL- EPICHLOROHYDRIN POLYMER)

		EPICHLOROHYDRIN	
		POLYMER)	
14.3. Transportgefahrenklassen	9	9	9
14.4. Verpackungsgruppe	III	III	III
14.5. Umweltgefahren	Umweltgefährdend	Nicht anwendbar.	MEERESSCHADSTOFF / MARINE POLLUTANT
14.6. Besondere Vorsichtsmaßnahmen für den Verwender	Abschnitten in diesem Sicherheitsdatenblatt.	Weitere Informationen zu Vorsichtsmaßnahmen entnehmen Sie bitte den anderen Abschnitten in diesem Sicherheitsdatenblatt.	Weitere Informationen zu Vorsichtsmaßnahmen entnehmen Sie bitte den anderen Abschnitten in diesem Sicherheitsdatenblatt.
14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten	Keine Daten verfügbar.	Keine Daten verfügbar.	Keine Daten verfügbar.
Kontrolltemperatur	Keine Daten verfügbar.	Keine Daten verfügbar.	Keine Daten verfügbar.
Notfalltemperatur	Keine Daten verfügbar.	Keine Daten verfügbar.	Keine Daten verfügbar.
ADR Klassifizierungscode	M7	Nicht anwendbar.	Nicht anwendbar.
IMDG Trenngruppe	Nicht anwendbar.	Nicht anwendbar.	KEINE

Für weitere Informationen zum Transport / Versand des Materials im Eisenbahnverkehr (RID) und Binnenschiffsverkehr (ADN) wenden Sie sich an die auf Seite 1 angegebene Adresse oder Telefonnummer.

ABSCHNITT 15: Rechtsvorschriften

15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

rzin		

 Zmogemtat			
Chemischer Name	CAS-Nr.	Einstufung	Verordnung
4,4'-Methylen-diphenyldiglycidylether	1675-54-3	Gruppe 3: Hinsichtlich	International Agency
		der Karzinogenität für	for Research on Cancer
		den Menschen nicht	(IARC)
		einstufbar (IARC Group	
		3: not classifiable as to	
		its carcinogenicity to	
		humans)	
Siliciumdioxid, (amorphe Kieselsäuren)	7631-86-9	Gruppe 3: Hinsichtlich	International Agency

3M[™] OEM Match Epoxy Seam Sealer, PN 08522, Beige (Part B)

der Karzinogenität für for Research on Cancer

den Menschen nicht (IARC)

einstufbar (IARC Group 3: not classifiable as to its carcinogenicity to

humans)

Titandioxid 13463-67-7 Gruppe 2B: International Agency

Möglicherweise for Research on Cancer

krebserregend für den (IARC)

Menschen (IARC Group

2B: possibly

carcinogenic to humans)

Beschränkungen der Herstellung, des Inverkehrbringens und der Verwendung bestimmter gefährlicher Stoffe, Gemische und Erzeugnisse

Folgende Stoffe sind im Anhang XVII der Verordnung (EG) Nr. 1907/2006 zu Beschränkungen der Herstellung, des Inverkehrbringens und der Verwendung bestimmter gefährlicher Stoffe, Gemische und Erzeugnisse aufgenommen worden. Der Anwender von diesem Produkt hat die aufgeführten Beschränkungsbedingungen einzuhalten.

<u>Chemischer Name</u> <u>CAS-Nr.</u>

4,4'-Methylen-diphenyldiglycidylether 1675-54-3

Status: gelistet im REACH Anhang XVII

Beschränkungsbedingungen: Siehe nähere Angaben zu Beschränkungen im Anhang XVII der Verordnung (EG) Nr.

1907/2006.

Status Chemikalienregister weltweit

Für weitere Informationen setzen Sie sich bitte mit 3M in Verbindung. Die Komponenten dieses Produkts entsprechen den Anforderungen der TSCA an Chemikalien. Alle erforderlichen Komponenten dieses Produkts sind im aktiven Teil des TSCA Inventory aufgelistet.

RICHTLINIE 2012/18/EU ("Seveso-III-Richtlinie")

Seveso Gefahrenkategorien, Anhang I, Teil 1

Gefahrenkategorien	Mengenschwelle (in Tonnen) für die Anwendung in	
	Betrieben der unteren Klasse	Betrieben der oberen Klasse
E2 Gewässergefährdend	200	500

In der Seveso Richtlinie Anhang I, Teil 2, namentlich aufgeführte gefährliche Stoffe Keine

Verordnung (EU) Nr. 649/2012 ("PIC-Verordnung")

Keine Chemikalien aufgelistet

15.2. Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung wurde für diesen Stoff / dieses Gemisch gemäß der geänderten Verordnung (EG) Nr. 1907/2006 nicht durchgeführt.

ABSCHNITT 16: Sonstige Angaben

Liste der relevanten Gefahrenhinweise

H315	Verursacht Hautreizungen.
------	---------------------------

H317 Kann allergische Hautreaktionen verursachen.

H319 Verursacht schwere Augenreizung.

3MTM OEM Match Epoxy Seam Sealer, PN 08522, Beige (Part B)

H351i Kann vermutlich Krebs erzeugen (Einatmen).

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.
 H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung.

Änderungsgründe:

Abschnitt 1.3: e-mail Adresse - Informationen wurden modifiziert.

Abschnitt 6.1: Personenbezogene Vorsichtsmaßnahmen - Informationen wurden modifiziert.

Abschnitt 7.2. Bedingungen zur sicheren Lagerung - Informationen wurden modifiziert.

Abschnitt 8.1: Expositionsgrenzwerte Tabelle - Informationen wurden modifiziert.

Abschnitt 8.2.2. Individuelle Schutzmaßnahmen – Handschutz und sonstige Schutzmaßnahmen: Schürze - Informationen wurden hinzugefügt.

Abschnitt 8.2.2: Individuelle Schutzmaßnahmen - Körper- und Hautschutz Information - Informationen wurden gelöscht.

Abschnitt 8.2.2: Hautschutz - Schutzkleidung Information - Informationen wurden gelöscht.

Abschnitt 9.2: Sonstige Angaben - Informationen wurden modifiziert.

Abschnitt 12.5: "Keine PBT/vPvB Informationen verfügbar" - Informationen wurden modifiziert.

Abschnitt 15.1: Information zur Karzinogenität - Informationen wurden modifiziert.

Abschnitt 15.2: Stoffsicherheitsbeurteilung - Informationen wurden modifiziert.

Abschnitt 2.3: Dieses Material enthält keine Stoffe, die als PBT oder vPvB bewertet werden. - Informationen wurden modifiziert.

Die vorstehenden Angaben stellen unsere gegenwärtigen Erfahrungswerte dar und beschreiben das Produkt nur im Hinblick auf Sicherheitserfordernisse. Es obliegt dem Besteller, vor Verwendung des Produktes selbst zu prüfen, ob es sich auch im Hinblick auf mögliche anwendungswirksame Einflüsse für den von ihm vorgesehenen Verwendungszweck eignet. Alle Fragen einer Gewährleistung und Haftung für dieses Produkt regeln sich nach unseren allgemeinen Verkaufsbedingungen, sofern nicht gesetzliche Vorschriften etwas anderes vorsehen. Dieses Sicherheitsdatenblatt wird zur Übermittlung von Gesundheits- und Sicherheitsinformationen bereitgestellt. Wenn Sie rechtlich der Importeur für dieses Produkt in die Europäische Union sind, sind Sie für die Erfüllung aller rechtlichen Anforderungen hinsichtlich des Produktes verantwortlich, einschließlich erforderlicher Produktregistrierungen/-meldungen, Stoffmengenerfassung und Stoffregistrierung.

Die Sicherheitsdatenblätter der 3M Österreich sind abrufbar unter www.3m.com/at